Wireless World
 RADIO AND ELECTRONICS

FEBRUARY

1948

Proprietors:

Managing Editor
Editor :

Y $\mathrm{E} A \mathrm{~A}$
OF F P U B L I C A TII O

ILIFFE \& SONS LTD HUGHS. POCOCK, M.I.E.E. H. F. SMITH

Editorial, Advertising and Publishing Offices: DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Telephone:	Telegrams :
Waterloo 3333	
(60 lines).	"Ethaworld, Sedist
London."	

PUBLISHED MONTHLY
Price: $1 / 6$
(Publication date 26th of preceding month)
Subscription Rate: 20/- per annum. Home and

Branch Offices:

Birmingham: King Edward House, New Street, 2. Coventry : 8-10, Corporation Street. Glasgow: 26B, Renfield Street, C.2. Manchester
26B, Renfield Street, C.2.

260, Deansgate, 3.

In this Issue

EDITORIAL COMMENT 39
ELECTRONICS AND ATOMIC ENERGY By E. W. Titterton 40
IONOSPHERE REVIEW : 1947 By T. W. Bennington 44
TEST REPORT : RADIOMOBILE MODEL Ioo 4^{8}
CLEANING SWITCH CONTACTS By J.J. Payne. 51
SHORT-WAVE CONDITIONS 52
WORLD OF WIRELESS 5 ?
SLOT AERIALS By D. A. Bell 5
COIL-PACK MODIFICATION By L. Miller 5"
C.F.S. EMITRON 60
PUSTH-PULL INPUT CIRCUITS By W. T. Cocking 62
COMMERCIAL DISC RECORDING 67
" j " By "Cathode Ray " 68
UNBIASED By "Free Grid " 72
LETTERS TO THE EDITOR 73
RANDOM RADIATIONS By " Diallist " 76
RECENT INVENTIONS 78

2 LORD NORTH ST.. LONDON. S.W. TELEFHONE ABBEY 2126. FACTORY: SOUTH SHIELDS, CO. DURHAM

VaLves and thelr applications

By M. G. SCROGGIE, B.Sc., M.I.E.E.
No. 14: Mullard HIGH-SLOPE R.F. PENTODE EF42 (continued)

LAST month's notes were devoted to constructional features of the EF42; here follow some of the electrical data. As a basis for comparison, the EF50, having been used so widely during the last nine years, is probably the best known; while the EF54 is a more recent type in the same class. Typical operating conditions (250 V on anode and screen and 10 mA anode current at about -2 V grid bias) are similar for all three valves.

The slope of the EF42, $9.5 \mathrm{~mA} / \mathrm{V}$, is about 50% up on the EF50 and 25% better than the EF54, for practically equal heater rating. Input and o'Itpuit capacitances (9.5 and 4.5 pF respectively) aie together about the same as in the EF50; $\mathrm{C}_{\text {in }}$ aione is not quite so good as the EF54's 6.2 pF , but $\mathrm{C}_{\mathrm{a}-\mathrm{g} 1}$ is better $-<0.005$ compared with 0.02 pF . Maximum anode dissipation is slightly less - 2.5 W instead of 3 W in EF50 and EF54. Equivalent noise resistance of the EF42 (750S) is about the same as in the EF54 and twice as good as in the EF50. Input resistance at $50 \mathrm{Mc} / \mathrm{s}$ (5000Ω) is slightly better than the EF50 but only half as good as the EF54.

The upshot of all this is that if the criterion is maximum operating frequency, where $g_{m} \times$ input resistance is the limiting factor, the EF42 must give way to the EF54, useful up to $250 \mathrm{Mc} / \mathrm{s}$. But notwithstanding its miniaturity, at television and f.m. frequencies the EF42 is appreciably better than the EF54 and substantially better than the EF50; enough perhaps to save a whole stage (and, of course, considerable space) in a television r.f. or i.f. amplifier. It is particularly applicable to radar i.f. amplifiers, because they usually work at about $45 \mathrm{Mc} / \mathrm{s}$ and require an even wider bandwidth.

Though the type specifically for the v.f. stage is the EF55, especially if there is any doubt about sufficiency of output from a smaller valve, in most situations the design can be made to allow the economy of using the EF42 there also.

A demand that is likely to increase is for a valve suitable for r.f. amplification in v.h.f. receivers, especially f.m. The EF42 is eminently suitable for this purpose up to at least $150 \mathrm{Mc} / \mathrm{s}$.

Then again, the EF50 has been used in a great variety of special circuits - cathode followers, time base generators, etc. - where its high slope is helpful; and here the EF42 does even better. Its output resistance as a cathode follower is not much more than 100Ω; and the fact that all the electrodes - even the outer screen - are brought out separately allows the maximum adaptability.

So altogether the EF42 looks like being an exceptionally versatile and effective valve, a decided improvement on the EF50, and preferable in some respects even to the EF54.

This is the fourteenth of a series written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from the address below. Technical Data Sheets on the EF42 and other valves are also available.

THE MULLARD WIRELESS SERVICE CO. LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE.,W.C. 2

Wireless World
 RADIO AND ELECTRONICS

FEBRUARY
1948

Proprietors :
ILIFFE \& SONS LTD

Managing Editor Editor: HUGH S. POCOCK, M.t.e.e. H. F. SMITH

Editorial, Advertising and Publishing Offices: DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Telephone:	Telegrams:
Waterloo 3333	"Ethaworld, Sedist
(60 lines).	London."

PUBLISHED MONTHLY
Price: $1 / 6$
(Publication date 26th of preceding month)
Subscription Rate: 20/- per annum. Home and Abroad

Branch Offices:

Birmingham : King Edward House, New Street, 2. Coventry : 8-10, Corporation Street. Glasgow: 26B, Renfield Street, C.2.
Manchester :

260, Deansgate, 3.

In this Issue

EDITORIAL COMMENT 39
ELECTRONICS AND ATOMIC ENERGY By E. W. Titterton 40
IONOSPHERE REVIEW : 1947 By T. W. Bennington 44
TEST REPORT : RADIOMOBILE MODEL Ioo 48
CLEANING SWITCH CONTACTS By J. J. Payne.. 51
SHORT-WAVE CONDITIONS 52
WORLD OF WIRELESS 5?
SLOT AERIALS By D. A. Bell 5
COIL-PACK MODIFICATION By L. Miller 5
C.P.S. EMITRON 60
PUSH-PULL INPUT CIRCUITS By W. T. Cocking 62
COMMERCIAL DISC RECORDING 67
" j " By "Cathode Ray " 68
UNBIASED By " Free Grid " 72
LETTERS TO THE EDITOR 73
RANDOM RADIATIONS By "Diallist" 76
RECENT INVENTIONS 78

2 LORD NORTH ST., LONDON, S.W 4. TELEFHDNE ABBEY 2126. FACTORY: SOUTH SHIELDS, CO. DURHAM

VaLVES AND THEIR APPLICATIONS
 By M. G. SCROGGIE, B.Sc., M.I.E.E. No. 14: Mullard HIGH-SLOPE R.F. PENTODE EF42 (continued)

\mathbf{L}^{4}AST month's notes were devoted to constructional features of the EF42; here follow some of the electrical data. As a basis for comparison, the EF50, having been used so widely during the last nine years, is probably the best known; while the EF54 is a more recent type in the same class. Typical operating conditions (250 V on anode and screen and 10 mA anode current at about -2 V grid bias) are similar for all three valves.

The slope of the EF42, $9.5 \mathrm{~mA} / \mathrm{V}$, is about 50% up on the EF50 and 25% better than the EF54, for practically equal heater rating. Input and o'stput capacitances (9.5 and 4.5 pF respectively) aie together about the same as in the EF50; C $\mathrm{C}_{\text {in }}$ aione is not quite so good as the EF54's 6.2 pF , but $\mathrm{C}_{\mathrm{a}-\mathrm{gl}}$ is better $-<0.005$ compared with 0.02 pF . Maximum anode dissipation is slightly less - 2.5 W instead of 3 W in EF50 and EF54. Equivalent noise resistance of the EF42 (750ת) is about the same as in the EF54 and twice as good as in the EF50. Input resistance at $50 \mathrm{Mc} / \mathrm{s}$ (5000Ω) is slightly better than the EF50 but only half as good as the EF54.

The upshot of all this is that if the criterion is maximum operating frequency, where $\mathrm{g}_{\mathrm{m}} \times$ input resistance is the limiting factor, the EF42 must give way to the EF54, useful up to $250 \mathrm{Mc} / \mathrm{s}$. But notwithstanding its miniaturity, at television and f.m. frequencies the EF42 is appreciably better than the EF54 and substantially better than the EF50; enough perhaps to save a whole stage (and, of course, considerable space) in a television r.f. or i.f. amplifier. It is particularly applicable to radar i.f. amplifiers, because they usually work at about $45 \mathrm{Mc} / \mathrm{s}$ and require an even wider bandwidth.

Though the type specifically for the v.f. stage is the EF55, especially if there is any doubt about sufficiency of output from a smaller valve, in most situations the design can be made to allow the economy of using the EF42 there also.

A demand that is likely to increase is for a valve suitable for r.f. amplification in v.h.f. receivers, especially f.m. The EF42 is eminently suitable for this purpose up to at least $150 \mathrm{Mc} / \mathrm{s}$.

Then again, the EF50 has been used in a great variety of special circuits - cathode followers, time base generators, etc. - where its high slope is helpful; and here the EF42 does even better. Its output resistance as a cathode follower is not much more than 100Ω; and the fact that all the electrodes - even the outer screen - are brought out separately allows the maximum adaptability.

So altogether the EF42 looks like being an exceptionally versatile and effective valve, a decided improvement on the EF50, and preferable in some respects even to the EF54.

This is the fourteenth of a series written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from the address below. Technical Data Sheets on the EF42 and other valves are also available.

THE MULLARD WIRELESS SERVICE CO. LTD., TECHNICAL PUBLICATIONS DEPARTMENT, CENTURY HOUSE, SHAFTESBURY AVE.,W.C. 2

Wireless World
 RADIO AND ELECTRONICS

Vol. LIV. No. 2
February 1948

Short-wane Hroadeasting Under Fire

ALETTER from a correspondent, printed on another page, draws attention to a vitally important aspect of the use of communication channels. For some years there has been a growing body of opinion, particularly in America, that short-wave international broadcasting has failed ; that it is a gross misuse of valuable communication channels to monopolize them for a service which benefits a negligible proportion of the world's listeners. We believe that it was intended strongly to oppose the allocation of channels for such purposes at the Atlantic City Conference, but apparently other views prevailed, and the H.F. broadcasting bands have actually been widened rather than curtailed.

As an alternative to long-distance H.F. broadcasting for direct reception by the listener, it has been suggested that much better results could be obtained, with greater economy of channels, by distribution over line or radio international communication networks, with subsequent rebroadcasting by the national stations of the country of destination. In addition to the saving of channels it is urged that the use of diversity reception and other methods open to big organizations will ensure a better signal than the "direct" listener can ever hope to achieve.

Since our correspondent's letter was written, strong support for his contentions has come from a leading article in the American journal QST. Referring to the Atlantic City Conference, the article says "It is difficult to portray adequately the greed, rapacity and general radio-dumbness of the average foreign spokesman for government broadcasting. With exceptions, of course, he is commonly a rather high-powered political character, not a real radio man and not a technical man, caring less than nothing for the communication services and rioting in the plenipotentiary powers given him by his government. Radio means only broadcasting to him and he doesn't care what happens to other services as long as he gets what he wants."

Turning to the large number of channels required.for international short-wave broadcasting, QST goes on to say "It has been reliably calculated by engineers, that it would take about half of the H.F. spectrum to set up, on sound technical
principles, an idealized system meeting every nation's ambition of being able to propagandize every other nation."

Obviously, some of those who oppose shortwave broadcasting are actuated by motives of selfinterest. Some of the arguments against it carry force; others, such as those based on the present short-comings of the service due to chaotic ether conditions and inatlequate receivers, do not. These are defects that can be overcome; they are not fundamental to the issue.

Admission of Defeat

To recommend the total or even partial abolition of S.W. broadcasting would, in our view, be a counsel of despair, and an admission of defeat; an admission that mankind lacks the wit to turn to proper uses a medium of such self-evident potentialities for good. Many years ago, Wireless World, campaigning against apathy and even active opposition, urged the setting up of an Empire broadcasting service, and many of the arguments then adduced in support still hold good. But it cannot be denied that S.W. broadcasting has been misused, and also that conditions have changed. Many of the factors involved-social, political and cultural-cannot properly be discussed in a technical journal. Undeniably, such services, like all forms of H.F. long-distance communication, make heavy demands on channels, as it is necessary to cater for diurnal and seasonal variations in propagation conditions. In the case of broadcasting the demands on channels become almost unbearably heavy when the nations seek to use a multiplicity of languages other than their own.

The sole concern of this journal is that radio communication channels should be used to the greatest advantage. We are by no means convinced that H.F. long-range broadcasting represents what is inherently a misuse of valuable channels. But it is perhaps overdone ; some of it is ineffective and some is put to base uses. Those who are laying claim to channels and those responsible for the conduct of services must regard themselves as being under an obligation to justify themselves, and see that they have a good case to present.

BEFORE we can proceed to discuss the part played by electronic techniques in the field of atomic energy* it is necessary to trace the development of the subject from its early beginnings. To examine so wide a field within the confines of a single, short article will necessitate an abbreviated, and in some details, a not completely rigorous treatment.

It has been known since the closing years of the last century that certain heavy elements like uranium and radium are radioactive. Their atoms disintegrate (or split) of their own accord with the emission of ionizing radiations. Energy is liberated during the process as is evidenced by the fact that a lump of radium stays warm and radiates heat. continuously. The process is uncontrolled, no efforts of man can increase or decrease the rate at which the energy is liberated, and the elements providing atomic energy in this form are too scarce in nature for them to be useful sources of power.

The ionizing radiations emitted from radioactive substances are of three types. a-particles, which are the central positively-charged cores (or nuclei) of helium atoms, β-particles which are now known to be electrons similar to those emitted from a hot cathode, and γ-rays which are high-frequency electromagnetic waves similar to X-rays but with greater penetrating power.

Fig. I. Schematic diagram of ionization chamber and D.C. amplifier.

[^0]
Electronics and

Techniques Used in Research and Production

Such radiations may be detected and their properties examined by means of an ionization chamber depicted in Fig. 1.

In this case the chamber is a parallel-plate air capacitor C across which a potential E is maintained. α-particles, β-particles or γ-rays passing through the air between the plates produce $(+)$ and (-) ions which migrate under the influence of the electric field and produce a current in the circuit.

Measurement of the change in potential caused by this current flowing through R gives an indication of the strength of the radioactive source. In Fig. i the poten-

Fig. 2. Greinacher voltage doubler circuit.
tial change across R causes the bias of V and therefore the current through it to change. This is indicated by the meter M. This technique of D.C. amplification forms the basis of a large number of instruments now in use.

The controlled release of atomic energy came as a result of experiments by Lord Rutherford in which, by bombarding the nitrogen atoms in air with the bulletlike a-particles emitted from a mixture of radioactive materials, nitrogen was transformed into a form of oxygen with the emission
of a nuclear particle called the proton (which is the nucleus of a hydrogen atom). Rutherford's experiments opened up the whole field of nuclear physics.

Application of electronics in this

Fig. 3. Cockcroft-Walton voltage doubler circuit.
field came about in two ways. First, it was desired to replace the radioactive source of bombarding particles by a man-controlled source. This led to the development of high voltages for the acceleration of the charged particles to sufficiently high velocities, and therefore energy, to split atoms.

Fig. 2 shows one of the early circuits-the Greinacher voltage doubler. The circuit is well-known to users of metal rectifiers and it will be seen to be two half-wave rectifier circuits connected back-to-back, so that the outputs are in series.

It was little used for particle acceleration because it is only possible to double the voltage obtained from the transformer secondary.

Atomic Energy

By E. W. TITTERTON, Ph.D. (Atomic Energy Research Establishment, Harwell)

Instead a new circuit was developed by Cockcroft and Walton and is shown in Fig. 3. If E_{0} is the peak voltage from the transformer secondary the capacitor C_{1} charges to E_{0} through V_{1} dur-

Fig. 4. Voltage quadrupling circuit.

ing the negative half cycle. On the positive half cycle the voltage E_{0} across C_{1} is in series with that across the transformer secondary and therefore C_{2} charges through V_{2} to a potential $2 \mathrm{E}_{0}$. The voltage waveform at A is sinusoidal, oscillating between earth potential and $2 \mathrm{E}_{0}$.

The circuit has the advantage that further diodes and capacitors may be put in cascade to obtain voltages greater than $2 \mathrm{E}_{0}$. Thus Fig. 4 shows the circuit modified to provide an output voltage of $4 \mathrm{E}_{0}$.

With such equipment as this Cockcroft and Walton, in 1932, accelerated protons by allowing them to fall through a potential difference of 600 kV and produced nuclear reactions by allowing the particles to bombard targets made
of certain elements. This was the first wholly man-controlled atomsplitting.

Although nuclear energy may be released in such reactions the process is very inefficient, since the energy consumed in accelerating the particles is far greater than that which may be released.

The rectifier-transformer type of accelerator has been largely replaced by other forms of equipment, notably the electrostatic generator devised by Van de Graaff and the cyclotron, developed by Lawrence.
Fig. 5 shows the essentials of an electrostatic generator. A series of corona points, A, usually gramophone needles, are held at a potential of 10 to 50 kV and spray

Fig. 5. Simplified diagram of electrostatic high-voltage generator.
positive charge on an insulating, endless belt. The belt, passing over two pulleys, carries the charge up and takes it inside the hollow aluminium spinning which constitutes the high-voltage electrode. Further corona points, B, remove the charge from the belt and transfer it to the high-voltage electrode somewhat like a lightning conductor discharges a thunder cloud. The H.T. head therefore acquires charge and rises in voltage. Equilibrium conditions are attained when the current con-
veyed to the H.T. head by the belt is exactly equal to that drawn by the ion source and leakage along the insulators (not shown).

Generators such as this operate at voltages between 2 and 5 million and are usually enclosed inside a steel pressure tank. Gas, such as nitrogen, at a pressure of Io to 20 atmospheres, can then be used as a high-voltage insulating medium.

Higher energies still may be achieved by the use of a cyclotron. a schematic diagram of which is given in Fig. 6. D_{1} and D_{2} are Hlat, semi-circular boxes open along their straight sides and called "dees" because of their shape. They are like the two halves of a very short cylinder cut along a diameter. They form part of the capacitance of, an R.F. oscillator (about ro Mc/s) and are mounted on insulating supports within an evacuated circular box. This box lies between the poles of an electromagnet so that the mag. netic field is perpendicular to the plane of the dees (i.e., the paper in Fig. 6).

Suppose that the ion source, located centrally between the dees, is producing protons. Then at the instant when D_{1} is negative with respect to D_{2} (the peak voltage between D_{1} and D_{2} is between 20 and 50 kV) protons are accelerated forwards and into D_{1}. Since the dees are metal there is no electric field inside them and, once inside, the proton moves in a circular path under the influence of the magnetic field. If the frequency

Fig. 6. Schematic diagram of cyclotron showing spiral ion path. In practice the ion path has many more turns than are shown here.
is chosen correctly the proton completes a semi-circle and returns to the accelerating gap between D_{1} and D_{2} when the field is reversed, i.e., D_{2} negative with respect to D_{1}. The proton is then accelerated again and proceeds to

Electronics and Atomic Energy-

describe a semi-circle of larger radius inside D_{2} returning again for further acceleration in the correct phase. As indicated in Fig. 6 the path is made up of a series of semi-circles of increasing radius until eventually the protons come under the influence of the electric field of the negatively charged deflector plate which pulls them out of the magnetic field and causes them to strike a target.

Cyclotrons giving particles with energies corresponding to 10 million volts are commonplace, and the largest, at Berkeley, California, which has pole-faces 184in in diameter, has produced protons with energy corresponding to an acceleration of 100 million volts.

Professor Oliphant, at Birming. ham University, has a special form of accelerator under construction called a proton synchrotron which, it is hoped, will give protons energies corresponding to an acceleration through 1,000 million volts.

The second point at which electronic techniques entered the field was in the detection of the single particles of matter emitted in a nuclear reaction; for example, the protons emitted in Rutherford's original experiment mentioned earlier. A single, energetic, charged particle such as a proton

Fig. 7. Simple vol-

or α-particle entering an ionization chamber (Fig. I) causes a burst of ionization. If the ions are collected quickly the charge $Q \cdot$ collected causes a voltage pulse of amplitude Q / C to be developed across the plates of the chamber whose capacity C m:ay be between $50-100 \mu \mu \mathrm{~F}$. The magnitude of the charge is such that a single nuclear particle gives rise to a pulse of the order of IO^{-4} volt. An A.C. coupled linear amplifier
with a gain of a million will amplify the pulse to 100 volts at which level it can be presented on a cathode-ray oscillograph screen.

The output of the amplifier may contain pulses of a variety of sizes, and it is often necessary to reject pulses less than a chosen size. This can be achieved by employing a voltage-discriminator, an example of which is given in Fig. 7. The anode of V is nor-
and, because it has no electrical charge, it does not ionize gases and can travel through great thicknesses of material.

The second discovery was made by two Germans, Hahn and Strassman, and was that a neutron impinging on the heavy uranium atom can be captured and cause the atom to break up

mally at earth potential while its cathode is held at some positive potential E through the resistance R_{2} which connects to the potentiometer chain $\mathrm{R}_{3}, \mathrm{R}_{4}$.

The circuit gives no output pulse except when the amplitude of the input pulse applied across R_{1} exceeas E volts. the diode V then conducts and a positive output pulse is developed across R_{2}. The rate at which the pulses leave the discriminator can be determined by an integrating counting rate circuit or by an electronic counting circuit, which adds up the pulses it receives and presents the answer as a total on a telephone message register. Originally; counting circuits employed thyratrons in a circuit which would produce only one output pulse for every two input pulses; that is the circuit divided by two. The use of thyratrons imposed a limitation on speed because of the de-ionization time, and to-day hard-valve circuits are preferred. With hard valves, circuits can be designed which will accept pulses at rates up to one or two million I-r second. The block diagram of the complete equipment for detecting and counting individual nuclear particles is shown in Fig. 8 , and is representative of thousands of such pieces of equipment in daily use in laboratories throughout the world.

Two fundamental discoveries led to the large-scale release of atomic energy.

The first, made by an Englishman, Sir James Chadwick, was the discovery of the neutron. The neutron is one of the ultimate units from which atoms are built
into two nearly equal partssmaller atoms-with the release of a large amount of energy and between one and three further neutrons. This process is called nuclear fission. If, for simplicity, we assume that two neutrons are emitted for fission, then if each of these two neutrons is captured by other uranium atoms further fissions can occur and four neutrons result. It will be seen, as depicted pictorially in Fig. 9, that the neutrons multiply in the system and energy is liberated. This process is called a chain reaction.

These ideas were known before the war and the wartime development was concerned with putting them into practice. The first attempts were made employing slow (low velocity) neutrons and the growth of neutrons in the reaction was arranged to proceed slowly enough to enable control to be effected. Such control is achieved by absorbing the neutrons with some material like cadmium which does not undergo fission and generate further neutrons. The machine which results is called a pile because it is a pattern of uranium rods embedded in a pile of graphite blocks. The graphite is used to slow down the neutrons. The number of neutrons present in the system is constant when the number formed by fission per second is equal to the number lost per second by leakage from the machine and by absorption in the cadmium control rods. By moving the control rods in or out of the pile we can decrease or increase the rate of fission and hence the rate of energy production.

The first pile was completed and went into operation in Chicago, U.S.A., late in 1942. The first pile in England was completed in August, 1947, and can be operated at a power level of roo kW .

The more spectacular development, the extremely rapid release of atomic energy in a bomb, was achieved in July, '1945, in the U.S.A., employing fast neutrons so that the reaction built up extremely rapidly and was completed in a time of the order of a millionth of a second.

To provide energy on a scale large enough for industrial use it will be necessary to build large piles operating at high temperatures and developing many megawatts of output power. Such developments are in progress in the U.S.A., in England, and in France.

To determine the power level at which a pile is operating it is necessaryto measure the number of neutrons present. Since neutrons are uncharged and do not ionize, special methods of detection are necessary.

A special boron-coated ionization chamber can be employed. Boron, on capturing a neutron, disintegrates with the emission of an a-particle which ionizes and can can be detected electronically as described earlier. The number of a-particles therefore gives an indication of the number of neutrons crossing the ionization chamber and hence the power level at which the pile is working. If the number of neutrons increases, the number of counts increases and this information can be fed through an electromechanical system (e.g., a selsyn) to lower the control rods into the pile to reduce the reactivity of the system, thereby maintaining the power level constant. The process is analogous to the performance of an electronically regulated power supply.

Electronically operated safety circuits are usually employed to drop special safety control rods into the pile and shut the plant down in the event of failure of the cooling system, instrument breakdown, or the power rising too fast.

The materials used in pile con-struction-uranium and plutonium
-are poisonous and workers fabricating the materials have to be protected. Because both materials emit a-particles it is possible for very minute quantities of material on the hands to be detected by the single particle technique. Automatic equipment for monitoring hands is employed tc indicate when the hands are contaminated and need cleasing.

Near an operating pile there is strong neutron and γ-radiation and the strength of these radiations is measured remotely. usually by D.C. amplifier techniques as described earlier.

Within the pile, in addition to a higher intensity of neutrons and γ-rays, the fission products themselves are radioactive. Moreover, slow neutrons are captured and produce artificial radioactivity in

Fig. 9. Diagrammatic re-resentation of a chain reaction illustrating the growth of the neutron n) population by the fission of uranium atoms (U) on the assumption that two neutrons are emitted at each fission.
many elements. A pile thus produces large quantities of radioactive materials the radiations from which can be harmful to health. Some of these materials are wanted for medical purposes, such as the treatment of cancer, but the majority have to be disposed of safely from time to time.

The circulating gas, water or other medium used to cool the pile becomes radioactive and it is of importance to ensure that it will cause no harm to human beings, animal or plant life if it is to be discharged into the atmosphere in the case of a gas, or a river or the sea in the case of a liquid.

It will be seen from these remarks that the development of instruments which will detect radioactive materials, through the a, β or γ-radiations which they may emit, is of paramount importance. We have already discussed a-particle detection. Fortunately β-particle and γ-ray detection can be done very easily by means of a device known as a Geiger-Muller counter. In one form this device, which can be regarded as a sensitive form of
ionization chamber, consists of a wire passing axially down a metallized glass tube as shown in Fig. 1o. A very high electric field is maintained between the wire and the cylindrical wall. The cylinder is filled with a gas-vapour mixture at a pressure of a few centimetres of mercury. Entry of a β-particle or absorption of a γ-ray within the counter can precipitate a discharge in the gas (somewhat like a thyratron breakdown) which causes current to flow through the high resistance R. The change of potential across R is of the order of I volt and can be amplified and used to drive a counting rate meter or counting circuit. The counters used are usually selfquenching and the discharge extinguishes itself after a de-ionization period of about ioo $\mu \mathrm{sec}$.
Large numbers of instruments of this type need to be located about the plant, in laboratories, etc., to protect the health of the workers.
A last sombre thought is that, until we can be certain that there will never be another war, we must always consider the possibility that atomic bombs might be used against us. If that ever happened it would be vital that our Armed Forces and Civil Defence Services be equipped with electronic instruments for detecting radioactive contamination.

Sufficient has been said in this brief review of the subject to indicate that we are at the beginning of an era of technical development

Fio. io. Schematic representation of a Geiger-Muller counter circuit.
in the field of atomic energy. As we go forward towards industrial applications more and more instrumentation will be required.

The ingenuity of the physicists and electronics engineers has been, and will be, called into play to design the necessary electronic instruments, and increasing numbers of skilled technicians will be required to operate and maintain them.

Ionosphere Review: 1947

FOLLOWING the usual prac tice of Wireless World at the end of each year it is intended here to review the course of the present sunspot cycle, with particular reference to the changes which occurred during 1947, and to examine the effects of these upon short-wave propagation during the year. And after that we may attempt to see how conditions may vary during 1948 and after, though, because of the present impossibility of accurately predicting the changes in solar activity a long way ahead, this attempt must necessarily be some-

Fig. I. Annual means of sunspot of relative numbers.
thing in the nature of a conjecture.

1947 was an extremely interesting year so far as radio-wave propagation is concerned-a year during which much information was acquired which will be of value to several branches of physical science, as well as to the radio engineer. Sunspot maximum apparently ocurred during the year, and was a maximum of very exceptional magnitude. Consequent on this high sunspot activity the regular ionosphere layers became capable of propagating higher radio frequencies than they ever have since radio first began-thus providing for the first time practical information as to their behaviour under such peak conditions of solar activity.

First, for those new to the subject, a few brief words about the

Short-wave Propagation Survey, with Forecast for 1948

nature of the data to be examined. The ionization of the upper atmosphere, which is responsible for the propagation of short radio waves, is brought about, in the main, by the action of the sun's ultra violet radiations, and, since the sun's activity and hence the strength of its radiations varies over a long period which is the sunspot cycle, the state of the ionosphere and hence the conditions for shortwave propagation also varies over the same period. Among other evidence of the variations in the sun's activity are the sunspots which appear upon it, and these are regularly examined at the various astronomical observatories, and the information they obtain is published in the form of "sunspot relative numbers." The observations made at the different observatories are correlated by that at Zurich, and the final " number" published from there. Continuous records of this index of the solar activity go back to 1749-less comprehensive data exist since 28 B.C.-though the final "numbers" for 1947 are not yet available. For this year we have, therefore, used those obtained by the Royal Observatory at Greenwich alone, and these are provisional only.
Measurements of the atmospheric ionization are regularly made at ionosphere observatories in many parts of the world, though, of course, the records of these only go back for a few years. Nevertheless, as will be seen, the correlation between the two sets of phenomena, solar and ionospheric, has been well established. The ionospheric data is usually published in the form of hourly values of the critical frequency of the various layers, and we have mainly used that obtained by the station of the D.S.I.R.' at Slough. The critical frequency, it will be remembered, is the highest frequency returned from a given

By
T. W. BENNINGTON

(Engineering Division, B.B.C.)
layer when the exploring wave is sent vertically upwards. For communication over a distance the corresponding value is the Maximum Usable Frequency, which is dependent on the critical frequency and the angle of incidence made on the layer in order for the wave to cover the particular distance. As a rough guide we could assume that, at present, the M.U.F. for the maximum distance it is possible to cover in one hop would be about 3.3 times the critical frequency in these latitudes.

Course of the Sunspot Cycle.In Fig. I are plotted the annual means of the sunspot relative numbers for a period covering the whole of the last and present cycles, and from these a rough idea of the characteristics of the present cycle can be gained. It is seen that the solar activity increased exceptionally quickly from the minimum in 1944, reaching, in three years, a far greater value than was reached in the first four years after the preceding minimum in 1933. Sunspot activity during 1947 was thus, generally speaking, at a higher level than at any time in the preceding cycle, and indeed, was higher than it has been during any year since 1778 . In fact, during the period of 198 years covered by the continuous records there is only that one year during which the mean sunspot activity was greater than that during 1947and that 169 years ago. We are thus perhaps fortunate in living at an epoch during which the possibilities for observing the effects of high solar activity upon radio communication-and upon other
terrestial phenomena-are such as do not occur very frequently.

However, there are indications that the maximum in the present sunspot cycle has now been reached, and that during 1948 the activity will be decreasing. We cannot, however, be at all certain about this, since there is no reliable way of telling exactly what will happen round about a period of maximum activity like the present. As we shall later see, however, the value of sunspot relative number recorded in May, 1947, has not since been reached, and, during the last few months of the year, there was a more or less steady fall in the activity. Altogether, therefore, we should expect 1948 to be the first year in the "decreasing" phase of the present cycle. Sunspot cycle curves are, however, of the "sawtooth" variety, indicating a longer period for the "decreasing" than for the "increasing" phase, so that we should not, in any case, expect the activity to fall during 1948 to the same extent that it rose during 1947. 1948, then, may be expected to be a year of high solar activity and consequently of high usable frequencies for long-distance radio communication. During the winter 1948-49, however, these frequencies are likely to be somewhat lower than they are at the present time.

Ionospheric Variations. - In Fig. 2 are plotted (top curve) the monthly means of the sunspot relative numbers for each month of the years 1944-47, and (bottom curve) the monthly means of the noon critical frequencies of the F_{2} layer for the same period, as measured in England.

The sunspot activity is seen to vary erratically month by month, but to have a generally increasing characteristic towards May, 1947. In May it reached the phenomenally high value of 225 (this is a provisional number, and is, therefore, subject to later correction when the observations of a number of observatories are taken into account). Only twice before within the period covered by continuous records has the monthly mean reached a value exceeding 200, namely, in December, 1836, when it was 206.2, and in May, 1778, when it was 238.9 .

The bottom curve of Fig. 2
shows some interesting features, the first of which is the general sweep upwards of the critical frequencies in sympathy with the increasing sunspot activity, due, of course, to the increasing level of ionization of the gases in the F_{2} layer under the influence of ionizing solar rays of a gradually increasing intensity. It is seen that, as between the epochs of minimum and of maximum activity the increase in noon critical frequency was of the order of $3.0 \mathrm{Mc} / \mathrm{s}$ during the summer and $8.0 \mathrm{Mc} / \mathrm{s}$ during the winter, implying increases in the M.U.F. for longest-distance transmission of about $9.0 \mathrm{Mc} / \mathrm{s}$ and $29.0 \mathrm{Mc} / \mathrm{s}$ respectively.
In this curve there are, of course, the seasonal variations in critical frequency superimposed on those due to the sunspot cycle, and these are interesting in themselves. First, as is always the case with the F2 layer in the Northern Hemisphere, the lowest daytime values of critical fre-
cal frequencies of the year occurring, generally speaking, in November and in February.

Thus, in November, 1947, the mean critical frequency for noon was $14.0 \mathrm{Mc} / \mathrm{s}$, implying a mean M.U.F. for longest-distance working in these latitudes of $46 \mathrm{Mc} / \mathrm{s}$. This high value of noon critical frequency will probably not be exceeded in the present cycle, so we may come to regard November, 1947, as being the month of highest frequency radio conditions for the current sunspot cycle, and indeed for many years years past, and possibly for many' yet to come. These high critical frequencies were not, of course, unexpected, as will be evident from a quotation from last year's "Ionosphere Review" (Wiveless World, March, 1947, p. 120): "From Figs. 2 and 3 we might hazard a guess that the highest daytime critical frequencies of the present cycle will occur about October or November of 1947, and that during the latter month the

Fig. 2. Monthly means of sunspot relative numbers and noon F_{2} critical frequencies for the past four years.
quency occur each year during the midsummer period. Then there is, each year, an increase of critical frequency towards the winter, but with the peculiar " mid-winter effect'" causing a small fall in the critical frequency at the extreme mid-winter period. This results in the highest daytime criti-
noon mean is likely to be of the order of $14.0 \mathrm{Mc} / \mathrm{s}$."
Correlating Sunspot and Ionospheric Phenomena.-In Fig. 3 are given (full-line curve) the twelve-month running average value of the sunspot number during the present sunspot cycle, and (dashed line curves) the

Ionosphere Review : 1947-

twelve-month running average of the noon and midnight critical frequencies as obtained in England. The object of presenting the information in this way is to smooth out the month-by-month fluctuations on the sunspot activity and the seasonal fluctuation in the critical frequency variations, and thus render the long-period effects in both quantities more apparent. It is done by taking for the mean for the epoch at the centre of any month the average of the twelve-monthly means having that month as the centre. Both noon and midnight critical frequencies are seen to respond to the changing sunspot activity relatively faithfully. The greatest degree of critical frequency variation over the cycle occurs in the noon curve-for at noon the sun's effect upon the ionsphere is more direct-and we see that the increase in mean critical frequency over the cycle has been about $5.4 \mathrm{Mc} / \mathrm{s}$. Though over most of the cycle the correlation was very good, during the past few months the increase in critical frequency has lagged behind that in the sunspot numbers, as if some sort of saturation effect in the ionization were occurring. The midnight critical frequency, which is, of course, much lower than that at noon, also follows the increasing sunspot activity faithfully, and does not show the "saturation effect" referred to. Here the increase over the cycle is about $2.8 \mathrm{Mc} / \mathrm{s}$.

The good correlation between the twelve-month running averages of sunspot number and critical frequency applies to all layers and all times of day, the magnitude of the critical frequency change varying with the layer and time of day. Thus the response of the whole ionosphere to variations in the activity of its producing agent, the sun, is, over a period of time, remarkably faithful and well defined.

When we consider this close correlation of the measured critical frequency - and thus, implicitly, of the M.U.F.-with the observed sunspot activity, and when we turn back and examine the sunspot activity during past cycles, we are forced to a rather remarkable yet perfectly logical conclusion-that short-wave pro-
pagation conditions during 1947 must have been generally better, and particularly so on the higher frequency bands than they have been during any year since 1778 . This will be apparent when it is remembered that the ionization of the absorbing layers is not increased by the increasing sunspot activity to the same extent as is the ionization of the refracting layers. Thus, with exceptionally high activity the M.U.F. will be exceptionally high, the L.U.H.F. (lowest useful high frequency) will be only moderately so, and
down variation in the ionization of the layers, and hence in the M.U.F.s, from day to day, even under normal conditions, and the most information about long-distance high-frequency propagation will be obtained on frequencies above these regular day-by-day ones. We may briefly examine a few such results to see what they indicate.

We must, of course, confine our attention to propagation over long distances-by way of the regular ionospheric layers. For, as is well known, there frequently oc-

Fig. 3. Twelve-month running averages of sunspot numbers and of noon and midnight F_{y} critical frequencies in Endland.
so the band of usable frequencies will be at its widest.

Practical Results. - The high theoretical values of M.U.F. indicated by the measured critical frequencies during 1947 seem to have been well borne out by the results achieved in actual practice. Higher working frequencies were usable during the autumn and winter in the various communication services than, generally speaking, have ever been regularly usable before. But regular communication services are not usually in a position to experiment in the use of very high frequencies for long-distance work -they have to maintain services on frequencies that are well received on every day, although, of course, it is advantageous to work on the highest frequencies on which this object can, at any particular time, be well achieved. But there is considerable up-and-
cur during the summer months cases of propagation over medium distances on frequencies up to 100 Mc / s. Such transmissions however, are effected either by way of Sporadic E ionization or by means of refraction within the troposphere, and, since both these phenomena appear not to be affected by the changing sunspot activity, they have no significance in the present case.

Long Ranges on $50 \mathrm{Mc} / \mathrm{s}$. - At the last sunspot maximum (see Fig. I) there was no authenticated case of long-distance transmission being effected on the amateur $50-\mathrm{Mc} / \mathrm{s}$ frequency. During the winter 1946-47, with the sunspot activity approaching that of the last maximum, one such case was recorded between U.S.A, and this country, and one between Holland and South Africa. Since then the sunspot activity has considerably increased, and during
the later part of 1947-particularly during November-numerous amateur transmissions on this frequency have been effected between the U.S.A. and Europe, and over many other paths as well. The fact that long-distance transmission on $50 \mathrm{Mc} / \mathrm{s}$ has become frequently possible, albeit only during the appropriate season of a year of exceptional sunspot activity like 1947, is certainly interesting information as to the highest frequencies which the regular ionosphere layers are ever likely to become capable of propagating. One is tempted to add that, after the winter of 1948-49, it is unlikely that the amateurs will be able to work their $50-\mathrm{Mc} / \mathrm{s}$ contacts again for very many years to come.
Turning to the somewhat lower frequency of $45 \mathrm{Mc} / \mathrm{s}$ - upon which the vision channel of the London Television Service oper-ates-it was well known by observations made around the last sunspot maximum that long-distance propagation on this frequency could occur, and on such paths as that between the U.S.A. and this country. The observations indicated that such transmissions would be possible-though not by any means a daily occurrenceduring the winters of years when the sunspot number was of the order of roo or greater, whilst the implication was that they would be possible over southerly transmission paths for longer seasonal periods than in the case of transatlantic paths.

This idea seems, in general, to have been well confirmed. Last winter the sound transmissions on $41.5 \mathrm{Mc} / \mathrm{s}$ were received in numerous parts of the world, and this autumn and winter the $45-\mathrm{Mc} / \mathrm{s}$ signals have also been frequently received. Furthermore, considerable interference has been experienced by viewers in this country from Ámerican F.M. stations operating within the vision channel and, in particular, station WEFM in Chicago has frequently been received with such an intensity as to constitute a strong source of interference with the television picture. All these events are of great interest.
Forecast for 1948.-It will be seen from Fig. 3 that the running average sunspot curve has now commenced to fall, and, although
the critical frequency curves have not yet begun to do so the indications are that they will soon follow suit. As has been said, attempts to forecast the variations in solar activity a long way ahead have not hitherto been conspicuously successful. And, at a time like the present, when the activity is only just showing signs of a reversal in its trend, prediction is more than usually difficult. However, we may be justified in assuming that during 1948 the activity will, in general, decrease, and, remembering that it usually decreases at a slower rate than that at which it increases, and also that during the first year after the maximum the decrease is often particularly slow, estimate that the running average of sunspot number for the middle of 1948 will be about 120. This would imply that the running average of the noon critical frequency should have fallen from its maximum value by about 0.8 Mc / s to about $9.8 \mathrm{Mc} / \mathrm{s}$, and that for midnight by about o. $5 \mathrm{Mc} / \mathrm{s}$ to about $5.2 \mathrm{Mc}^{\circ} / \mathrm{s}$.

It is of more practical use, however, to know, not what the running average critical frequency may be at a particular epoch, but what value of monthly mean critical frequency is likely to occur during a particular month. It is not possible to deduce from the twelve-month running average what the monthly mean for any one month is likely to be, owing to the erratic nature of the month-by-month variations in solar activity. But it would appear from a study of Figs. 2 and 3 that by November, 1948, the noon mean critical frequency would only have fallen to about $12.6 \mathrm{Mc} / \mathrm{s}$. This implies that the mean noon M.U.F. for longestdistance working in these latitudes should be of the order of 4 T. 6 Mc / s, as compared with $46 \mathrm{Mc} / \mathrm{s}$ in 1947, whilst on certain days it should be quite considerably higher than this.
It is not possible in an article like this to say just how these changes will affect the working frequencies for communication services during 1948, for the detailed specification of such frequencies for all directions and distances is a very complex business. Generally speaking, however, it appears that, so far as the
sunspot cycle is concerned, 1948 will be a year of little change. There will, of course, be the alterations in working frequencies necessitated by the seasonal changes, which themselves vary considerably with the geographical location of the transmission paths, but apart from these the alterations made necessary should be of a minor character only. The daytime working frequencies should, it is anticipated, be from 3 to $6 \mathrm{Mc} / \mathrm{s}$ lower next November than they are at present, varying according to the different circuits, whilst the decrease in the nighttime working frequencies should be of a lower order than this. And the $50-\mathrm{Mc} / \mathrm{s}$ amateur band, which was about io per cent above the noon mean monthly M.U.F. during November, 1947, should be about 20 per cent above it next November. Nevertheless, since the sun-spot activity will still be high, radio conditions should, in general, be good, and favour the higher frequencies.

Miniature Portable

$D^{\text {ESIGNED in the form of a book, }}$ this self-contained battery superhet measures $8 \frac{1}{4} \mathrm{in} \times 6 \mathrm{in} \times 2 \frac{3}{3} \mathrm{in}$
 Tourist" portable. A waterproof carrying case with shoulder sling is available
(200-550 metres) and makes use of a sliding metal panel as an aerial. A socket is provided for an additional outside aerial if required. Mullard 1.4 volt miniature range valves are employed and 120 mW of power is delivered to the $3 \frac{1}{2}$-in loudspeaker.
The set is available in a variety of colours and the price is $£ 13135$ exclusive of purchase tax. The makers are Hermes, Brooke and Co., Poynters, Cobham, Surrey.

TEST HEPORT

Push-button Car Set

the gang condenser and each rotates it a pre-determined amount. The setting-up process is very simple; the desired station is tuned in manually and then one of the push buttons is made to register with this setting of the condenser. This operation is effected by loosening the milled head of the button, allowing the spindle to be drawn in by its spring and register on its conden-

IN this set we see the result of an eminently rational pooling of experience in the diverse fields of radio and car equipment manufacture. The design of the set represents collaboration between the Gramophone Company (H.M.V.) and Smith's Motor Accessories; it is sold, installed and serviced by a subsidiary firm, Radiomobile, Ltd.

The user of a car radio, who is very often the driver, can rarely do more than give the set a cursory glance before switching on, or changing the programme, so that the very simplest form of tuning is most desirable. This fact has been realized by the designers of the Radiomobile set and most of the operations are effected by push buttons. These include programme selection, waveband changing and tone control.

If a passenger wishes to search for a programme not previously set-up on the push buttons he or she can do so merely by pressing in a knob and turning the set in the customary fashion. A wavelength calibrated scale and pointer are included for this purpose.

All the controls of the set are grouped on a small panel measuring $9 \frac{1}{8} \times 2 \frac{1}{4} \mathrm{in}$ mounted slightly forward of the receiver unit proper. It has a detachable moulded escutcheon which is available in a range of colours to harmonize with the car instru-

The Model 100 embodied in the design of the fascia board of a car.
ment panel. The front of the receiver unit has a slight backward tilt and in this inclined face is mounted a 5 in loudspeaker.

As the available space for mounting the receiver in some cars may be limited the receiver and power supply units are separate entities, but normally combined. They can be separated when occasion demands and the power unit could then be stowed either in the engine compartment or anywhere else more convenient.

Considerable use is made of miniature components in order to keep the size as small as possible and the weight low. Miniature type valves of the all-glass pattern are used and as a result the overall dimensions, excluding the power unit, are $9 \frac{3}{4}$ in wide, $4 \frac{7}{8}$ in high and $9 \frac{3}{8}$ in deep. The power unit adds another $2 \frac{8}{4}$ in to the depth. The total weight is $17 \frac{1}{4} 1 \mathrm{lb}$.

The push buttons for programme selection act directly on
ser stop, then retightening the milled head.

By repeating this procedure, choosing either medium- or longwave stations, four pre-selected programmes become available by finger-tip control. It is perfectly feasible to make these changes in the selected stations while on the road, the passenger being able to do it while the car is actually in motion as no tools of any kind are required.

The four-programme push buttons are just above and to the right of the scale aperture

Radiomobile

 Model 100and they are balanced on the left by four more, two for tone and two for waveband switching. Immediately to the right of the scale aperture is the manual tuning control which drives the condenser through bevel gears and arranged so that a spring normally holds the driving bevel out of mesh. This prevents disturbing the tuning by turning the knob accidently. On the left of

Five-valve (plus rectifier) superhet. Push - button manual tuning. Push-button wavechange
Push-button tone control. Volume combined with on-off switch.
Tuning Range. 195 - 550 m ; 1,000. 2,000m.
Output. $\quad 3.5$ watts.
Input. $\quad 3.25 \mathrm{~A}$ at 12 V (6-V 3.25 A at 12 V ($6 . \mathrm{V}$ available).
the input circuit and merely results in certain limits being set for the length of the co-axial cable, and the type that can be used. Included in the aerial'circuit is a form of anti-interference filter.

The receiver has an R.F. stage with a tuned input circuit with a wide-band coupling linking its anode circuit to the frequency

the scale is another rotary control knob. This is the combined volume control and on-off switch.

The superheterodyne circuit is by no means orthodox. The very short aerial that has to be used necessitates a sensitivity
above the average for a broadcast receiver. As the signal pick-up is small, matching the aerial and its screened co-axial cable to the receiver input circuit is of far more importance than usual. But this is embodied in the design of
changer. This covers medium and long waves without switching and obviates the need for a third section in the tuning gang condenser. There is included also a further interference rejection network.

Radiomobile Model 100-

The frequency changer is a triode-hexode of normal design, and it is followed by one I.F. stage working on $465 \mathrm{kc} / \mathrm{s}$ and having a band width of $10 \mathrm{kc} / \mathrm{s}$ for 6 db attenuation at the limits.
Signal detection, A.G.C., and one stage of A.F. amplification, are provided by a double-diodetriode which in turn is resistancecapacity coupled to an A.F. pentode giving about 3.5 watts output.
A.G.C. is applied in full to the R.F., F.C. and I,F stages, and consequently good control is obtained under all conditions of operation, and they vary very considerably on the road.
High tension at 210 volts and 55 mA is supplied by a vibrator in conjunction with a transformer and valve rectifier. This, and the filaments of the valves, which are 6.3 -volt type and arranged in series-parallel, draw 3.25 amps from the car's 12 -volt battery. The valves used in the set and in the sequence described here are W8ı, X8ı, W8ı, DL8ı, KT8ı and U82, the last mentioned being the H.T. rectifier.

It is a tribute to the design that with the majority of modern cars only the minimum of engine suppression is needed. Some rearrangement of the plug leads and H.T. wiring may be required, also possibly repositioning of the coil. As for suppressors, one $5-\mathrm{k} \Omega$ resistor in the lead from the coil to the distributor and a few $0.5-\mu \mathrm{F}$ capacitors across some of the L.T. make and break contacting points will generally suffice.

Radiomobile is building up an installation and servicing organization throughout the country. Likely mechanics drawn mainly from garages are given a week's intensive course at the Radiomobile school at Hayes, Middlesex. Here they are coached in the circuit technique, in faultfinding, in installation and the many other aspects of the subject deemed necessary to inspire cofidence in the pupils to tackle any problem arising from the use of this equipment.

A road test was made with a Model 100 fitted in a 1947 family saloon car, the installation having been carried out by the Radiomobile service department in Cricklewood. One suppressor re-
sistor only was fitted in the ignition system and a few changes were made in the run of the leads from the distributor to the plugs. The object of this was to eliminate, so far as possible, loops between the leads and engine casing, thereby minimizing the radiation from these leads. A roof aerial was fitted just above the middle of the windscreen.

With the volume control turned fully up and the set detuned from a station so that maximum sensitivity was obtained, a slight suspicion of ignition noise could be discerned in the background noise of the set. This condition of maximum sensitivity rarely, if ever, is needed for broadcast reception, as in most cases the signal will be strong enough to operate the A.G.C. and so lower the general sensitivity.

As an example of this, the B.B.C. Moorside Edge transmitter was receivable in London at sufficient strength to operate the A.G.C. except in badly
screened localities. Several Continental stations were tuned in with ease and provided a signal of real entertainment value. Indeed, on open ground, such as on Wimbledon Common, these stations were of such strength that the volume control had to be backed off, and this was during daylight.

The only interference of any consequence experienced during the tests emanated from passing lorries, motor buses and trolley buses, the former two producing typical ignition noises and the last mentioned the "scratchy" type of interference associated with electrical contacting equipment. The overhead power wires accentuated this, but at no time were these forms of interference really troublesome, due, no doubt, to the filtering action of the built-in noise suppressors.

The set sold by Radiomobile, Ltd., Cricklewood Works, London, N.W.2, costs $£ 27$ 6s, plus $£_{10} \mathrm{I}^{\mathrm{s}} 9 \mathrm{~d}$ purchase tax.

Wolsey Television Aerial

Use of Synthetic Rubber Waterproof Fittings

SEVERAL improvements have been made in the design of Wolsey television aerials and the latest models are lighter, stronger and more weatherproof than hitherto, The familiar "H" pattern, comprising

Synthetic rubber waterproof fttings are use. 1 at the joints between the aerial rods and junction boxes in the latest Wolsey television aerial.
weighs only 4 lb and consists of a light-weight tubular cross arm with welded-on masthead cap and end junction boxes.

Aluminium alloy tubes, fitted with synthetic rubber connectors, screw into waterproof sockets on the junction boxes. The aerial junction box has a removable cover giving access to the centre connections for joining up the feeder. The other has a sealed-in straight-through connector.

Either co-axial or twin wire cable can be used. It is brought out through a hole at the masthead cup so that it can be lashed to and brought down the pole.

The "H" pattern aerial, which is listed as model H / M, is a closespaced array with the reflector 32 in, or $\frac{1}{8} \lambda$ approximately at $45 \mathrm{Mc} / \mathrm{s}$ behind the aerial. The complete aerial, less pole and securing fittings, costs 67 s 6d. Wall brackets, chimney stack lashings and feeder are extra. For example, a double set of chimney stack lashings and 8 ft pole costs 6os 6d.

A single dipole without reflector and constructed on the same lightweight and weatherproof lines is also available. It costs 37 s 6 d .

The makers are Wolsey Television, Ltd., 87, Brixton Hill, London, S.W.2.

Cleaning
 Use of Solvents: Effect of Lubrication

By J. J. PAYNE, Grad. I.E.E.
(Admiralty Signal Establishment)

CARBON tetrachloride is generally accepted as a useful agent for removing the cause of defective or noisy switch contacts and it is widely believed that it functions by removing surface films of grease.

The opinion that grease is often the cause of faulty contact is inaccurate, as will be seen later; it can have little or no direct effect on electrical contact. It will, in fact, be shown that a thin layer of grease is an important feature in the operation of a switch, or any form of moving contact. The real cause of noisy contact is thought to be due to particles of solid matter with insulating characteristics which mechanically lift the surfaces of the contacts apart, and are held by the thin layer of grease.

In order to study the process involved let us consider a switch of the wiping contact type. The two mating surfaces appear smooth, but in fact consist of a series of microscopic undulations. Only the high spots of these two surfaces can be in electrical contact, as shown in the figure. It

Sketch of contact surfaces.
would appear possible from this figure that the high spots of one contact could enter the valleys of the other. There is little chance of such an occurence, as it is extremely unlikely that all the scratches will be exactly parallel.

Switch Contacts

Photograph of typical wafer switch, subjected to mechanical life test after cleaning with carbon tetrachloride.

Thus high spots only will be in contact.

Consider now a layer of grease applied to these surfaces, of thickness less than the depth of the scratches, and the switch operated a few times. Due to the viscous natare of the grease, the contact pressure will force the high spots through this layer. Thus they will still make electrical contact, and the valleys will now be filled with grease. As it is the high spots which are again in contact the presence of the grease has in no way affected the area of contact, and hence the resistance. When this layer has collected sufficient foreign matter to pile up and separate the contacts, the switch will become noisy and erratic in operation. This is due to random building-up and collapsing of the piles of foreign matter during movement of the switch. When the majority of them are forced into the valleys, electrical contact between the high spots is again possible. This random effect will, therefore, result in large changes of contact resistance, even causing a series of complete makes and breaks, accompanied by the usual symptoms known as noise.

Let us now proceed to cure this fault by applying a quantity of carbon tetrachloride to the contact. As this is a solvent for the
grease, the grease will go into solution. Hence the foreign matter is no longer held to the contact faces, and will be washed off, together with the grease. As the cause of the faulty contact has been removed, our switch has now returned to its original noise-free action.

But we are not yet out of the wood. In curing the faulty switch, we have removed the film of grease. As in any mechanical device, the result will be increased friction, and, eventually, excessive wear, even though a switch is not normally operated at high speed.

A series of mechanical life tests were conducted by the author on a batch of new wafer-type switches. Half of this batch were treated with carbon tetrachloride. In every case the untreated switches showed no serious effects, while excessive wear took place on those treated. This in some cases led to the severing of the tongue on the moving contact, and in others the fixed contacts were dragged from their normal position until the moving contact jammed against their edges. The dark patches on the tongue of the switch rotor, illustrated in the accompanying photograph, represent the area denuded of plating, thereby exposing the base metal, which has suffered severely from

Cleaning Switch Contacts-

the effects of wear. One of the upper contacts clearly shows the distortion due to drag. It was known that a film of grease had been applied to the above switches during manufacture. Thus the increased life of the untreated switches can be attributed to the presence of this film. This was further confirmed by tests on treated samples, which had a new film of grease applied in the manner about to be described. The presence of this grease produced no significant change in contact resistance.

It may be concluded that the ideal switch-cleaning fluid is one which will remove any foreign matter, but will leave a film of grease deposited on the contact surfaces. A suitable method of achieving this result is to use a cleaning fluid with lubricant in solution. Such a solution when applied to a faulty switch would wash out any foreign matter in the manner previously described. Furthermore, on evaporation of the solvent a film of grease would be deposited on the surfaces. A suitable solution was found to be ro per cent lanolin in white spirit or trichlorethylene.

There is a danger of flooding the switch in an attempt to make sure. This must be avoided, as excess fluid will spread over the insulation, and the thickness of film on the contact will not be increased. The effect of flooding the switch would be to deposit grease on the surface of the switch insulation. As this will also tend to collect foreign matter, trouble may eventually occur due to surface tracking.

The continued use of this method of contact cleaning may eventually lead to insulation troubles as mentioned above, although no cases of this nature have been brought to the author's attention. This difficulty may be overcome, however, by periodically cleaning the entire switch with neat solvent and when dry applying a drop of lanolin solution to the contacts. In cases where low insulation losses are of vital importance this latter method may be adopted every time such a switch is cleaned. A method of controlling the application of this solution, by colouring with an aniline dye, has been sug-
gested to the author. This would give visual indication of the area covered by solution, and would also serve as a warning of large
deposits of grease on vital insulators. Conversely the effectiveness of removing this excess grease may be observed.

Short-wave Conditions

December in Retrospect : Forecast for February

By T. W. BENNINGTON
(Engineering Division, B.B.C.)

DURING December maximum usable frequencies for this latitude decreased both by day and night. The daytime decrease-mentioned in this column for December -was due to the " mid-winter effect," while the night-time decrease was the normal one due to the greater length of night in the Northern Hemisphere. Despite the daytime decrease in M.U.F.'s conditions were such that long-distance communication on the higher frequencies was good to most parts of the world, albeit frequencies as high as $50 \mathrm{Mc} / \mathrm{s}$ were seldom usable, though they had been during November. Night-time working frequencies, though relatively low, seldom fell below about $9 \mathrm{Mc} / \mathrm{s}$, except over a few high-latitude paths.
There was not much ionosphere disturbance during the month, and those storms which did occur were not of great intensity. The most disturbed period was 4 th $/ \mathrm{I} 3$ th, and disturbances of a minor kind took place on 15 th / 16 th, 23 rd and 29th / 3ist.
Forecast. - By February the "mid-winter Effect," which, in the Northern Hemisphere, always results in a decrease in the daytime F_{2} layer ionization round about the winter solstice, should have come to an end, and the daytime M.U.F.'s should therefore increase considerably. There should also be an appreciable increase in the nighttime M.U.F.'s, as compared with those for January.

Daytime working frequencies are thus expected again to be very high -of the same order as those which prevailed last November-and longdistance communication on exceptionally high frequencies should be frequently possible in all directions from this country. The $28-\mathrm{Mc} / \mathrm{s}$ amateur band should be regularly usable for long periods over daylit paths, and long-distance communication on $50 \mathrm{Mc} / \mathrm{s}$ may become an occasional possibility. In fact, conditions for the use of this latter frequency are not likely again to
be so good during the present sunspot cycle. Night-time working frequencies will be higher than during January, though frequencies as low as $9 \mathrm{Mc} / \mathrm{s}$ will still be necessary in order to maintain regular communication in some directions.

Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during February for longdistance circuits running in different directions from this country. In addition a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers. All time in these reports are in G.M.T.

Montreal :	0000	11	Mc / s		Mc / s
	0200	9		(14	,
	0900	11	, or $15 \mathrm{Mc} / \mathrm{s}$	(18	"
	1100	21	"	(28	"
	1200	26	"	(40	",
	2000	21	, or $17 \mathrm{Mc} / \mathrm{s}$	(34	",
	2200	15		$(22$	"
	2300	11	"	(18	"
Buenos Aires:	0000		Mc/s		Mc / s
	0400	11	"	(19)	"
	0700	15	"	(20)	,"
	0800	21	"	(30	",
	0000	26	"	$(41$	
	1900	21	"	(34	"
	2100	17	"	(29	"
	2300	15	"	(23	"
Cape Town :	0000		Mc/s		Mc / s
	0300	11	"	(18)	,"
	0500	15	"	(20)	",
	0600	21	"	(30	
	0700	26	"	(42	"
	1800	21	"	(32)	"
	2000	17	"	(28)	",
	2300	15	"	(22)	"
Chungking :	0000		Mc / s	(14	Mcs)
	0400	11	,, or $15 \mathrm{Mc} / \mathrm{s}$	(16	"
	0 040	21	",	$(29$,
	0700 1300	26	",	$(39$	"
	1300 1500	21	" 0 15 Mc/s	$(29$	"
	1500 1800	17	", or $15 \mathrm{Mc} / \mathrm{s}$	$(21$	
	1800 2200	11	",	115 14	",

February is not usually a particularly bad month for ionosphere storms, though those which do occur are likely to be troublesome over dark transmission paths. At the time of writing it would appear that storms are more likely to occur during the periods ist $/ 4$ th, 7 th $/ 8$ th, I5th, 2 Ist/22nd and 25 th/29th than on the other days of the month.

Receiver Production *irst Radar Patent? . New Government Radio Post

B.R.E.M.A.

THE third annual report of the British Radio Equipment Manufacturers' Association, one of the four constituent bodies of the R.I.C., was issued last month.

In the section dealing with the production programme for the year June, 1947, to May, 1948, details are given of the $\ell^{18} 8,200,000$ worth of receivers which the pre-war set manufacturers are licensed by the Ministry of Supply to produce during that period. This is said to be the equivalent of $5,300,000$ sets. Special arrangements have been made to meet the needs of newcomers to the industry.

An increase of $£ 70,000$ a month over the rate of exports during the peak period of 1946 has to be maintained to the end of 1948 to meet the year's target of $£ 12$ million which the Government has set the industry.

It is stated that the Ministry of Supply regards cat radio " as a pure luxury at this present time" and in consequence the policy of allowing free production would have to be modified.

Under "Television" the report states that the shortage of C.R. tubes is the main limiting factor to greater output of receivers. The root of the difficulty is said to be the scarcity of skilled glass-blowers and it is therefore unlikely that the supply of tubes would meet future demands unless moulded production becomes economically possible. This, in turn, is dependent on large. orders for tubes within a limited range of sizes. The question of standardizing tube sizes as a first step towards mass production is. therefore, being considered.

In reviewing the work of the Association's Technical Committee reference is made to its investigations into F.M. It is pointed out that it is likely that a frequency of around $90 \mathrm{Mc} / \mathrm{s}$ will be employed by the B.B.C. for the F.M. transmissions, whereas the original investigation into the increased cost of producing receivers for F.M. was based on the use of $45 \mathrm{Mc} / \mathrm{s}$. The further cost of covering the $90 \mathrm{Mc} / \mathrm{s}$ band "would undoubtedly be very considerable."

HISTORVC PATENT

WHAT is believed to he WatsonWatt's first radar specification has just been published by the Patent Office. Originally filed on

September 17th, 1935, the complete specification was accepted in May, 1937, but it was withheld from publication until now, when it is issued as No. 593.OI7.

Watson-Watt's address on the complete specification is given as Bawdsey Research Station, Bawdsey Manor, Woodbridge, Suffolk.

Among the claims enumerated by the patentee is that of " locating the position of aircraft, marine craft or other objects by utilizing re-radiation broadcast from the object when subjected to primary radiation, consisting in radiating from a transmitter pulses of electro-magnetic waves of suitable frequency and po'arization separated by intervals of substantially zero radiation, and receiving the electro-magnetic pulses re-radiated from the object in an indicating receiver."
The specification is obtainable from The Patent Office, 25 , Southampton Buildings, Chancery Lane, London, W.C. 2 , price is inland or is id abroad.

QUR COVER. Two rrocesses in the manufacture of C.R. tubes are given on our front cover an ' above; showing, res ectively, annealing the neck to the bulb an' sealing-in the electrodes. The rhotogra hs were taken at the High Wycombe factory of Electronic Tubes Ltd., a Cossor subsidiary.

TELEVISION FRANCAISE

OUR note in the December issue regarding the reception of French television in this country has brought forth enquiries regarding the present transmissions from the Eiffel Tower. We, therefore, give below one or two relevant details.

The transmitter, used during the war, was installed by the Germans and was dismantled by them during the retreat. The equipment now in use was produced by Cie Française de Television.

The vision transmitter works on $46 \mathrm{Mc} / \mathrm{s}$ with a peak power of 30 kW . The scanning rate is 455 lines per frame and 25 frames per second. Sound is transmitted on $42 \mathrm{Mc} / \mathrm{s}$ with a power of 5 kW

Transmission times (G.M.T.) are: Daily (except Sat. and Sun.), If50-1205. Daily (except Sat. and alternate Sun.), 1G00-I730. Tuestlay and Friday, 2000-2130.

"SPRAYED-ON" SETS FOR
 INDIA

${ }^{T}$$T$ is understood that a contract is about to be signed between Sargrove Electronics, Walton-onThames, and an Indian firm for the supply of ioo.ouo hroadcast receivers. These are to be made by the ECME process (Wiveless World, April, ${ }^{5947}$), in which the principle of high-speed " printed circnit" manufacture is carried to extreme lengths by spraying on circuit elements and wiring in the form of metallic and graphite coatings on insulating panels.

The recently imposed ban on the import of completed receivers into India has been temporarily relaxed in favour of these sets, though ECME plant is ultimately to be installed there for local production.

DR. SMITH-ROSE

THE new post of Director of Radio Research in the Department of Scientific and Industrial Research is to be filled by Dr. R. L. Smith-Rose, who has been superintendent of the Radio Division of the National Physical Laboratory since 1939.

In his new position he will be in charge of the radio research work of the D.S.I.R. for which a new station is to be built. The work at present being carried out in the N.P.L. Radio Division and the D.S.I.R. Radio Station at Slough, together with the work being undertaken for the D.S.I.R. at the Ministry of

World of Wireless-

Supply's Telecommunications Research Establishment, Malvern, will be conducted at the new station.

Dr. Smith-Rose, who is 53, and was recently elected a vice-president

Dr. R. L. Smith-Rose, D.Sc., Ph.D., M.I.E.E., D.I.C., A.R.C.S.
of the American Institute of Radio Engineers, joined the staff of the electrical department of the N.P.L. in 1919 and later was a member of the small band of workers who formed the nucleus of the wireless division of that department. He has been associated with the work of the Radio Research Board since its formation in 1920. He became principal scientific officer on the formation of the Radio Division in 1933.

His researches cover radio direction finding, the propagation of radjo waves and the investigation of the electrical constants of the soil and sea water and their influence on propagation.

WHAT IS RADAR?

INN the course of recent correspondence with the Post Office on the vexed question of " What is a Broadcasting Station?" we were given inter alia a concise definition of radar. It is defined as "a radiolocation system where transmission and reception are carried out at the same location and which utilizes the reflecting or retransmitting properties of objects in order to determine their position.' '
This definition was given during the recent Atlantic City Conference.

PICKUP TRACKING ERRORS

THE practice of setting pickup 'heads at an angle to the arm to minimize tracking errors was one of the topics discussed in a lecture by W. J. Lloyd, B.Sc., A.M.I.E.E., on " Factors in the Reproduction of .Gramophone Records" at the British Sound Recording Association meeting on December 19th. It was pointed out that although angular
tracking errors were reduced by this method, the frictional force at the stylus point did not act on a line passing through the pickup arm pivot as it does in the case of straight arms. There is a resultant force acting on the needle point towards the centre of the record and in some pickup movements the bias due to this force might give rise to more distortion than that due to the tracking error.

NEWS IN MORSE

ITI is some months since we last published details of the transmissions of official news bulletins in morse in the London Press Service radiated daily by the Post Office stations. As there have been a number of changes recently we give the revised schedule below. These transmissions are intended for overseas reception.

The transmission times (G.M.T.) and the stations radiating are:-$0130-0315$ GBV, GIJ, GAII, GPN, MIJ, MIK, GIH
0330.0500* MIK, G1H

0445-0545* GAH
$0800-0930$ GCV
0945-1045* GCV
$1100-1200^{*}$ GBV, GIM, GCV, GCF
1215-1315* GCF, GCV, GIA
$1330-1430^{*} \mathrm{GBV}, \mathrm{GIM}, \mathrm{GDZ}, \mathrm{GCF}$
1445-1545* GCF, GCV, GIA, GAG
$1600-1700^{*}$ GBV, GIH, GBI, GCF
${ }_{1715}^{1601815^{*}}$ GBO, GCV', GIA
$1735-18150^{*}$ GBO, GCI, GAA, GBO, GI 1945-2045* GPN', GPF, GAV
$2100-2200^{*}$ GBV', GDI, GA1I, GPN
2215-2315* GPN', GBI, GIH
${ }_{2330-0100^{*}}$ GBV, GBI, GAII, GPN, MIJ, MIK, GIH
$2330-0030+$ GBV, GIJ, GAH, GPN, MIJ.
MIK, GIH
The frequencies (kc / s) on which these stations operate are:GBV, 78; GIJ, 6,985; MIJ, 7,447; GDI, 7,780; GAH, 8,065; GPN, 8,827; MIK, 9,725 ; GIH, 10,650 ; GPX, 11,645 ; GB1, 10, 865 ; GMM, 12,975 ; GBO, 13,665; GDZ, 13,910; GAV, 14,455; GPF, 16,190; GAG; 17,105; GCF, 19,005; GCV, 19,365 and GIA, 19,640 .

* Sundays excluded. + Sundays only.

NEW YEAR HONOURS

J. D. Cockcroft, C.B.E., Ph.D., LL.D., M.Sc., F.R.S., director of the Atomic Energy Research Establishment at Didcot; V. Z. de Ferranti, M.C., chairman and managing director of Ferranti, Ltd., and R. Y. Southwell, F.R.S., rector of the Imperial College -of Science and Technology, were created Knights Bachelor in the New Year Honours,
Among those appointed Officers of the Order of the British Empire ('O.B.E:) in the New Year Honours were: C. G. Phillips, for services as assistant director of telecommunications at the Ministry of Civil Aviation, and F. J. Toone, managing director of Parmeko, Ltd.'
A. E. Adams, chief designer of Scophony; Ltd:; L. I. Farren, technical assistant in the G.E.C. Research Laboratory, Wembley; S. B. Gwynn, divisional engineer (wireless), Burma, and H. Wolfson, senior research chemist in the Valve Research Laboratory of Standard Telephones and Cables, were appointed M.B.E.s.
H. Widbourne, lately foreman of workshops at T.R.E., has been awarded the British Empire Medal.

PERSONALITIES

Air Cdre. C. P. Brown, C.B., C.B.E., D.F.C., is relinquishing his Air Ministry post of Director of Operational Requirements (E) to become Chief Signals Officer, R.A.F. Mediterranean and Middle East Command. He was Director of Radar at the Air Ministry from 1942 to 1946.
R. G. Clark, M.I.E.E:, who as been manager of the engineering department of the Ferguson Radio Corporation since July, 1946, has been appointed a director. He was formerly head of the research and development department of Philips Lamps.
W. H. Date, B.Sc., A.M.I.E.E., has been appointed head of the Electrical Engineering Department of the Polytechnic, Regent Street, London, W.I, on the retirement of Philip Kemp. He was formerly senior assistant in the department.
J. V. Holman, managing director of Philco, has been elected a deputy chairman of the Joint Air Transport Committee of the London Chamber of Commerce.
C. L. G. Fairfield, M.A., A.M.I.E.E., who has joined the Mullard Wireless Service Co., will act as assistant to the directors in a technical capacity. He will be concerned with the applications of Mullard research and develop. ment work to industrial problems.
E. S. McCallister has been appointed to the electro-medical departnient of Philips Electrical, Ltd. He was previously in the instrument section of Mullards.
A. McVie, director of Kolster-Brandes and Standard Telephones and Cables, has retired from the chairmanship of the British Radio Equipment Manufacturers' Association.
O. S. Puckle, formerly chief engineer of Sobell Industries, has joined E.M.I. Developments.

Vincent de Ferranti, M.C., who is created a Knight Bachelor.

Andrew Reid, who handled the Press arrangements for the 1947 National Radio Exhibition at Olympia, has been appointed Press Officer to the Radio Industry Council. He will work from his own office at 1I, Garrick

Street, London, W.C. 2 (Tel.: Temple Bar 3901/2).
D. Robinson has been appointed sales manager of the Amplifier Department of Philips. He was the first chairman of the Institute of Public Address Engineers and was, before the war, joint managing director of Grampian Reproducers, Ltd.

WHAT THEY SAY

Pre-eminence of Radio.-" I believe that radio equipment is already more continuousk available and serviceable than the celestial bodies which are so readily obscured by haze, mist or cloud and of which the sun alone is conveniently available, if at all, for daylight observation. Consequently " I believe that the radio aids as a group are no longer secondary to classical celestial navigation, and that they are now the primary aids, a first eleven with celestial methods relegated to the second and reserve teams."-Sir Robert Watson-Watt broadcasting on "Twen-tieth-Century Aids to Navigation.'

IN BRIEF

A.S.E. now A.S.R.E.-The Admiralty Signal Establishment, which, ' with branches at Haslemere and Whitley, is the largest of the Admiralty research organizations, has changed its name to the Admiralty Signal and Radar Establishment. The work of the establishment now touches upon all aspects of Naval warfare, including communications, naval aviation and modern weapons of diverse types.

Television Licences.-In the six months ended in November the number of television licences issued in this country had risen by 12,515 , which is an increase of 66.8 per cent on the May figure of $18,73.5$. The latest figure is 31,250. The number of broadcast receiving licences (including television) in force in Great Britain and Northern Ireland at the end of November was approximately, 10,992,200.
Physical Society's Exhibition.-The 32nd annual exhibition of scientific instruments and apparatus, organized by the Physical Society, will be held in the Physics and Chemistry Departments of Imperial College, South Kensington, London, S.W.7, from. April 6th-gth. Admission avili be by ticket obtainable from the Society. On the opening day the hours of admission will be from 2.0 to 9.0 and on subsequent days from 10.0 to $I .0$ and from 2.0 to 8.0.

Mullard's Educational Service, which is at the disposal of technical colleges, training centres, radio societies, etc., was featured by the company in its exhibit at the Science Masters' Exhibition held recently in Sheffeld. The service is especially intended for users of film-strip projectors and includes a series of lectures under the general title "The Radio Valve." The Unicorn Head Film Strip Library, British Industrial Films, Chenil Galleries. 18.3, King's Road, Chelsea, London, S.W.3. distributes the lectures which, with the film strip of approximately 50 illustrations, cost tos each.

Empire Radio School.-A liaison team from the R.A.F. Empire Radio Schood at Debden, Essex, is to visit Australasia in a Lincoln aircraft, "Mercury II," fitted with the latest types of radio equipment for demonstration to units of the Australian and New Zealand Air Forces. Among the gear with which the aircraft is equipped is the G.E.C. radio compass, Rebecca Mk IV-a miniaturized version of Mk II, which is also carried, Gee, Loran, $\mathrm{H}_{2} \mathrm{~S}$ and V.H.F. communication sets TRiris.3A and TR5043.
Continental Television.-The Dutch secretariat of the Continental Television Society, the object of which is the promotion of television in Belgium, France, Luxembourg and Holland, is appealing for technical literature. The address of the Society is Kerksingel 69. Overschie, Rotterdam, Holland.
German Production.-The manufacture of civilian broadcast receivers has been resumed, by a number of oldestablished firms in Germany. Most of the receivers are of comparatively simple type and vary in price from 23.5 to 540 marks. Among the well-known pre-war names appearing on the new sets are Telefunken, Loewe, Blue Spot, and Lorenz.
R.S.G.B. Membership.-The annual report of the R.S.G.B. records that during the year 2,997 new members joined the society. Of the total memberstip of 13,870 at the end of September, 546 corporate members resided overseas.

Television Film.-Special film recording equipment was developed and manufactured by Pamphonic Reproducers for making the B.B.C. film of the Royal Wedding. The film was made by photographing the image on a television screen at Alexandra Palaee. The equipment, comprising apparatus for camera control and sound recording with automatic volume compression was developed within three weeks.
Electrical Trades Union.-The Radio Techrnical Advisory Committee of the F.T.U. has arranged a series of mectings in London for the radio workers it numbers among its members. Details of the first two meetings are given in the meetings section on page 56. The meetings are not confined to members of the Union. The full list of fixtures is obtainable from the Area Office, 324, Gray's Inn Road, I.ondon. W.C.r.

French Components Exhibition.The French Radio Industry Council announces that its annual exhibition of components, accessories and measuring instruments will be held from February 2nd to 7th at the Parc des Expositions de la Porte de Versailles, Paris, 15°. The full title and address of the French R.I.C. is Syndicat National des Industries Radioélectriques, 25, Rue de la Pépinière, Paris, 80.
A Valuable Index.-The annual index to Abstracts and References published in our sister journal Wireless Engineer during 1947 will be available after February 9th, from our Publisher. It includes an author index and a classified subject index. As supplies are limited early application for copies is advised. The price is 2 s 6 d (by post 2 s 8 d).

INDUSTRIAL NEWS

E.M.I. has 'purchased from Radio and Television Trust, Ltd., its Perivale factory, which is some three miles from the main factory of the E.M.I. group at Hayes, Middlesex. These two factories, together with that at Treorchy, South Wales, will be operated largely to increase the company's exports.

Philco and Airmec.-The factory referred to above has been disposed of by Radio and Television Trust, Ltd., owing to the need for reducing the company's manufacturing organization on account of the drastic cuts in the quota of receivers for the home market. Airmec, Ltd., is the manufacturing side of the company and produces Philco sets for the home narket, which are sold through Philco Radio and Television Corp. of Great Britain, and Airmec sets for export through Airmec International Sales, Ltd.
Philips Electrical Industries, Ltd., is the name of a. private company formed to acquire and hold certain shares of the Philips group of companies in this country. This internal reorganization of the company "has no external implications."
Radio Equipment, Ltd., has been formed as a Holding Company to acquire ninety per cent of the shares in the Mullard Wireless Service Co.
Components Exhibition.-The Radio Component Manufacturers' Federation, which is organizing the fifth annual private exhibition of British radio, television and electronic components and test gear, amnounces that stands have been allotted to 100 exhibitors. The exhibition, which will be held at Grosvenor House, Park Lane, Iondon, V.1, from March 2nd-4th, will be open from 10.0 a.m. to $6.0 \mathrm{p.m}$. to holders of invitation tickets. It will not be open to the general public.

Belling-Lee.-The twenty-fifth anniversary of the founding of Belling and Lee, Ltd., was celebrated with a dinner in London on December and to which friends and supporters of the company were invited.
R.S. Amplifiers, Ltd., of Reynolds Road, Acton Lane, London, W.4, has been acquired by Henri Selmer and Co., Ltcl., of II4-116, Charing Cross Road, London, W.C. 2 (Tel.: Temple Bar 0444), to whom all enquiries regarding R.S. equipment should now be sent.

Mullard has opened anuther "f feeder" factory at Hove, Sussex. It is for the assembly of sub-miniature valves, including those used in the Governmentsponsored "Medresco" hearing aid.
Rola.Celestion.-The Board of British Rola has been enlarged to include W. H. Page and S. J. Tyrrell. directors of Celestion. At the same time C. R. Nortcliffe, sales director of Rola, joins the Board of Celestion. Mr. Tyrrell will co-ordinate the research and technical development of the two companies.
Marconi's announce that the $\mathrm{f} 300,000$ order placed by the Chinese Government twelve months ago is now ready for shipment. The contract included sixteen telegraph/telephone transmit-

World of Wireless-

ters, thirty triple diversity receiving equipments and 150 commercial receivers.
Radio Industries Ball.--The success of the Ball held at the Royal Albert Hall on October 3rd has prompted the Radio Industries Club to decide to make it an annual event.
O. Greenlick, Ltd., of 34, Bancroft Road, Cambridge Heath Road, London, E.I, has moved to 265, Whitechapel Road, E.i.
S. G. Brown, Ltd., of Victoria Road, North Acton, London, W. 3 . ask us to say that the price of the moving-coil headphones advertised in the December issue was incorrect and should have been $\notin 55 \mathrm{~s}$.

CLUBS

Birmingham.-High-frequency heating will be cliscussed and demonstrated at the meeting of the Slade Kadio Society on February 6th by W. D. Wilkinson, B.Sc., of the G.E.C. Development Laboratory. Meetings are held at 8.0 on alternate Fridays at the Parochial Hall, Broomfield Road, Slade Road, Erdington. Sec.: C. N. Smart. Iro, Woolmore Road, Erdington, Birmingham, 23, Warwick.

Bovingdon.-An Amateur Radio Section of the Bovingdon Airport Club has been formed but is not confined to members of the airport staff. It therefore serves the Bovingdon, Chesham, Hemel Hempstead, and Berkhamsted areas of Hertfordshire. Meetings are held on Wednesdays at 7.30 in Building 161. B. N. Maclarty deputy engineer-in-chief of Marconi's, who until recently was head of the B.B.C. Design and Installation Dept., will talk on high-powered B.B.C. transmitters at the meeting on February 4th. Sec.: J. D. Lord, Police Station, Bovingdon, Hemel Hempstead, Herts.

Brighton.-Dr. D. G. Tucker will lecture on the Synchrodyne receiver at the meeting of the Brighton and Hove Group of the R.S.G.B. at the Golden Cross Hutel, Western Road, Brighton, at 7.30 on February 23 rd.

Ilford.-Demonstrations of the Goodmans' infinite baffle speaker and the G.E.C. tape recorder will be given to members of the IIford and District Raclio Suciety on fanuary 2gth and February 19th respectively. Meetings are held on Thursdays at 8.0 at St. Alban's Church Room, Albert Road, Ilford. Sec.: C. F. Largen, 44, Trelawney Road, Barkingside, Essex.

Oxford.-The Oxford and District Amateur Radio Society has been reformed and now meets on the first and third Wednesdays of the month at 7.30 at the Club Room, " Magdalen Arms," Iffey Road, Oxford. Sec.: H. Worsfold, 143, Iffley Road, Oxford.

Worthing.-The February meeting of the Worthing and District Group of the R.S.G.B. will be held on the fifth at Oliver's Café, Southfarm Road, Worthing, at 7.30 . The Ministry of Sunply fi'm "K.D.F. to Riudar" and some R.S.G.B. films, including that of the Atlantic City Conference, will be shown. Sec.: G. W. Morton, 42, Southfarm Road, Worthing, Sussex.

MEETINGS

Institution of Electrical Engineers

Redio Section.-" Ihe sppucation of Frequency Modulation to V.H.F. Multi-Channel Radiotelephony," by J. H. H. Merriman, M.Sc., and R. W. White, B.Sc., on February 4th.
"Maintenance of Television , Receivers in the Home," discussion, opener G. I. Watson, on February toth

Both these meetings will be held at Savoy Place, London, W.C.2, at 5.30.
Faraday Lecture.-" Electricity and Everyman," by Dr. P. Dunsheath, C.B.E., M.A., on February 27 th, at 6.30, at the Central Hall, Westminster. This is a public meeting.

East Midland Centre. - " Speech Communication under Conditions of Deafness or Loud Noise," by Dr. W. G. Radley, C.B.E., on lebruary roth, at 6.30, at the Gas Department Lecture Theatre, Nottingham. Sec.: G. Smith, Loughborough College, Loughborough. Cambridge Radio Group. -- "The Cavity Magnetron,' by Drs. H. A. H. Boot and J. T. Randall, F.R.S., on February 3rd, at 8.15 , at the Cavendish Laboratory.
Mersey and North Wales Centre. " The Design of High-Fidelity Disc Recording Equipment," by H. Davies, M.Eng., on February 16th, at 6.30, at the Royal Institution, Colquitt Street, Liverpool. Sec.: A. V. Milton, 12, Bevington Hill, Liverpool.

North-Eastern Ceulre. - Dr. Dunsheath's Faraday Lecture (see above), on February 18th, at 6.15, in the leecture Theatre, Literary and Philosophical Society, Newcastle-on-T yne. Sec.: E. C. Rippon, c/o C. A. Parsons and Co., Ltd., Heaton Works, New-castle-on-Tyne, 6.

North-Eastern Radio Group. - Dr. Radley's paper (see East Midland Centre) on February 16th, at 6.15, at King's College, Newcastle-on-Tyne.

North - Western Radio Group."Some Wartime Developments in Electronic Circuit Technique," by Prof. F. C. Williams, O.B.E., D.Sc., D.Phil., on February 25th, at 6.30, at the Engineers' Club, Albert Sepuare, Manchester.

Western Centre.-Dr. Dunsheath's Faraday Lecture (see above) on February 10 th, at 6.0, at the ReardonSmith Lecture Theatre, Cardiff. Sec.: L. Burdes, B.Sc. (Eng.), Flectricity Dept., Dorset House, The Promenade, Clifton, Bristol, 8.

Ivish Branch.-‘' Propagation Problems in connection with Short-Wave Broadcasting," by W. Jones, M.Sc., on February rgth, at 6.o, at Trinity College, Dublin. Sec.: R. N. Eaton, i, Foster Place, Dublin.

Mersey and North Wales Students" Section.-"The Engineering Aspects of Gramophone Record Reproxluction," by R. G. Whitehead, B.Sc. (Hons.), H. K. Barker, B.Sc., and H. P. Caldecott. B.Sc., on February 7th, at 2.30 at the Roval Institution, Colquitt Street, Liverpool.
British Institution of Radio Engineers London Section.-"A Multi-Carrier V.H.F. Police Radio Scheme," by J. R. Brinkley, on February 12th, at 6.0, at the London School of Hygiene and Tropical Medicine, Keppel Street (Gower Street), London, W.C.I.

Midlands Section.-' Some Aspects
of Moderate Precision Temperature Control in Communication Engineering," by M. P. Johnson, B.A.Sc., on January 3oth, at 6.30 , at the Technical College, The Butts, Coventry. Sec.: C. Stokes, B.Sc., 6, Esterton Close, Coventry, Warwick.
Merseyside Section.-' Link-Coupled I.F. Circuits Applied to Car Radio Receivers," by R. D. Trigg, on February I8th, at 6.45, at the Lecture Room, Liverpool Engineering Society, 9, The Temple, 24, Dale Street, Liverpool, 2. Sec.: J. Gledhill, B.Sc., 123, Portelet Road, Liverpool, 13.

North-Eastern Section. - Questions Evening on February inth, at 6.0 , at Neville Hall, Westgate Road, New-castle-on-Tyne. Sec.: M. A. Boardman, 20, Princes Avenue, Gosforth.
North-Western Section.-"A New All-Stage Valve," by J. A. Sargrove, on February 12 th, at 6.45, at the College of Technology (Reynolds Hall), Sackville Street, Manchester. Sec.: B. E. P. Ritson, 38, Parswood Court, East Didsbury, Manchester, 20.

Scottish Section. - "Supervisory Control," by L. G. Brough, on Feb. ISth, at 6.45, at the Institution of Engineers and Shipbuilders in Scotland, 39, Elmbank Crescent, Glasgow, C.2. Institution of Electronics
"Electronic Organs," by L. E. A. Bourn, on January 26 th at 7.0 in the rooms of the Royal Society of Arts, John Adam Street, London, W.C.z. Sec.: A. H. Hayes, 24, Buckingham Street, London, W.C.2.

North-West Brunch.-." The HighVacuum Technique," by Dr. R. Witty, on February 6th, at 6.30, at the Reynolds Hall, College of Technology, Manchester. Sec.: I. F. Berry, io5, Birch Avenue, Chadderton, Lanes.
British Sound Recording Association
"Recent Developments in Magnetic Recording," by P. T. Hobson, on February 27th at 7.0, at the Royal Society of Arts, John Adam Street, Adelphi, London, W.C.z.
Institution of Mechanical Engineers
"Kadio Valve Manufacture," by J. W. Davies, H. W. B. Gardiner, B.Sc.(Eng.), and W. H. C. Gomm, B.Sc.(Eng.), on lanuary 30th at 5.30 , at The Institution, Storey's Gate, St. James's Park, London, S.W.i.

British Kinematograph Society

Newcastle-ou-Tyne Section. - "The Film in Relation to Television," by Marcus F. Cooper, on February 3rd, at 10.30 a.m., in the Neville Hall, Neville Street, Newcastle. Sec.: Edward Turner, 30 , Ettrick Grove, Sunderland, Co. Durham.
Radio Society of Great Britain
"Interference-its Cause, Effects and Cure," by W. Hartley,. G8UY, on February 13th at 6.30, at the I.E.E., Savoy Place, London, W.C.2.

Electrical Trades Union

- Definitions and Standards of Skill in the Radio Trade," open discussion on lanuary 26th at 7.0 at the Alliance Hall, Caxton Street, London, S.W.I.
"Pre-detector Amplifying Systems," open discussion on February 24th at 7.0 at the Caxton Hall, Victoria Street, London, S.W.I.

The names and addresses of secretaries are included where they have not been given previously in this volume.

Slot Aerials

By D. A. BELL, M.A., b.Sc.

Vertical Polarization from a Horizontal Radiator

ALOT of the optimistic talk about the benefits to broadcasting and television of radar technique has been unjustified, but the "slot" aerial may prove to be a new line of development which, having started in wave-guide technique for radar, will grow upwards from centimetre wavelength to V.H.F. broadcasting, if not lower. As an example, it is reported that the B.B.C. are considering the use of slot aerials for their $90-\mathrm{Mc} / \mathrm{s}$ F.M. transmissions.

At centimetre wavelengths, energy is transmitted more efficiently as bounded electromagnetic waves in a waveguide than as currents in a conductor. When we want to radiate the energy which is being carried by a waveguide, we need not put the energy back into current form and then radiate from an aerial, but instead we can radiate electromagnetic wave energy directly, for example, through a horn.

Now the directivity of any radiator, whether aerial array or horn, is proportional to the dimension (in wavelengths) of the radiator at right angles to the plane in which the directivity is measured. So if we want a beam
which is liable to roll, we must use an aerial such as a one-tier broadside array of radiators (all fed in suitable phase) which is broad but not high.

The connection of a large number of dipoles to a common feeder with correct phasing and impedance matching would be a difficult problem at centimetre wavelengths. But if we punch a row

Fig. 2 Diagram (a) represents a strip dip le; (b) is the corresoon'ing slot in an in "nite metal

(a)
of spaced holes in the side of a waveguide, each hole will radiate some of the energy passing down the guide ; and uniform phasing of the radiation from the holes is effected by spacing them correctly along the length of the guide, remembering that the wavelength

Fig. i An array of ripoles (a) bermes 'iffi u't to constru t and feed at c ntimetre wavelencths ; tut a s! tte wave guide (b) gives an equivalent ra iation pattirn.
which is narrow in the horizontal plane but covers a wide vertical angle, for example, in a ship
inside the guide will be greater than the wavelength in free space. (Fig. I.)

Investigation of the optimum type of radiating "hole" in the waveguide led to the use of a slot of length about half a wavelength and of much smaller width, and from here on we find that study of the radiating properties of the resonant slot leads to re-

sults of much wider interest. First of all, a slot in an infinite sheet is closely equivalent to a flat strip dipole in free space if we consider the shapes of conductor and dielectric to be interchanged, (Fig. 2), except that the slot behaves as a " magnetic dipole." The polar diagram of a slot radiator in an infinite sheet is very similar to that of a dipole in free space, but whereas the electric field is parallel to the length of the dipole, it is the magnetic field that is parallel to the length of the slot. In practice, of course, the conductor in which the slot is situated is rarely even an approximation to an infinite sheet, and the resulting edge effects may be regarded as a diffraction phenomenon which can slightly improve the polar diagram in favourable cases. If we enc lose one side of the slot, preferably with a chamber at least a quarter-wavelength in diameter, the radiation can emerge from one side only ; but unless the sheet is of very large extent, there will
still be some backward radiation due to diffraction round the edges of the sheet.

The feed to a dipole is normally inserted in series with the midpoint, and for the resonant length the input impedance is purely re

(a.)
dipole has zero pick-up in the endon direction, while a single vertical dipole receives uniformly from

Fig. 3. Folded dipole diagram (a) with the corresponding folded slot (b)
sistive and about 70 ohms in magnitude for a fairly thin conductor; similarly, the input to a slot is fed across the centre (Fig. Ib) and the input resistance at resonance is about 500 ohms. ${ }^{1,2,3}$ Increasing the diameter of the conductors of a dipole reduces the impedance, but increasing the width of a slot reduces the admittance; i.e., increases the impedance. Again, just as the input impedance of a dipole can be multiplied by a factor of the order of 4 by using a folded construction, so the input impedance of a slot can be reduced roughly four-fold by folding it.

The two practical advantages of a slot aerial are, first, that it can be incorporated in a conducting structure and, secondly, that its polarization is at right-angles to that of, a dipole. For the first factor, Booker ${ }^{1}$ has suggested that slots might be cut in the skin of an aircraft and plugged with dielectric, thus avoiding the use of projecting-rod aerials for the V.H.F. band. Similarly, marker and landing beacons on aerodromes could radiate from horizontal slots let into the surface of the ground, even in the surface of a runway if necessary. The low-frequency limit to this type of application is set by the need for a cavity about a quarter-wavelength deep below the slot.

Although the question of horizontal versus vertical polarization for television broadcasting is complicated, there are one or two advantages of horizontal dipoles that are not available with vertical dipoles. One is that a horizontal
all directions. in the horizontal plane. By replacing the vertical dipole by a horizontal slot, we can receive a vertically polarized signal and yet have little response in the end-on directions. (At first sight one might hope to get perfect suppression of back radiation by enclosing one side of the slot; but unless the slot is in a very large sheet, the diffraction round the edges may reduce the front/ back ratio to the same order as that of a dipole with reflector or director in the optimum position ; it will also cause some end-on pick-up.) In future, perhaps, blocks of flats will have provision for a television slot aerial to be incorporated in the window frames on the side of the building facing the transmitter, thus providing a good built-in aerial for those on the upper floors, without disturbing the clean lines of the building.

Another possibility is the use of a vertical stack of slots as a vertically polarized analogue of a stack of horizontal dipoles. If 6 narrow slots are fed in parallel (Fig. 4) the resultant impedance will be about $80-90$ ohms, which will match into the conventional types of feeder cable. The main difficulty is the requirement for the surrounding sheet to be considerably larger than the slot dimensions. The sheet might be of wire mesh, and stretched between two masts.

The technique has now been carried a stage further by eliminating the sheet surrounding the slot and leaving only a narrow loop of conductor corresponding to the edge of the slot. ${ }^{4}$

The examples which have been quoted should be sufficient to show that there are many possibilities of interesting applications.

References

1 "Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet's Principle)," H. G. Booker, J.I.E.E., Vol. 93, Part IIIA, p. 620.
2 "Slot Feeders and Slot Aerials," C. E. G. Bailey, ibidem, p. 615 .
s "' Resonant Slots," W. H. Watson, ibidem, p. 747.
${ }^{4}$ F.M. and Television, July, 1947; p. 3^{8}.

Appendix

Driving-point Impedance of a Slot. In reference ${ }^{2}$ above, Booker has shown that if Z_{1} is the impedance of a dipole, and Z_{2} the impedance of a corresponding slot, then

$$
Z_{1} Z_{2}=\frac{1}{4} Z^{2}
$$

where Z is the "characteristic impedance of free space" and is equal to 120 ohms (377 ohms). Hence if the impedance of any type

Fig. 4. Suggested stack of slots to give directional gain in the vertical plane with vertically polarized radiation.
of dipole system is already known, the impedance of the corresponding slot system is immediately obtainable from the relation

$$
Z_{2}=\frac{1}{4} Z^{2} / Z_{1}
$$

Providing technical information, service and advice in relation

 to our products and the suppression of electrical interference

Window Mounting Aerials

We have been examining some official statistics showing that of all complaints of interference reported by the public to the Post Office Engincering Department, a very large proportion can be attributed to the set user trying to do without any aerial, or at least a wire round the room.

Readers of this journal know that a good outside aerial is necessary in order to obtain a reasonable signal to noise ratio. They also know that their advice is often ignored owing to expense, trouble and difficulty of erection. All these objections can be met by the recommendation of a "Winrod"* 1 window mounting aerial. The cost is low, under a pound and deliveries are ex-stock. We all know it cannot be said to take the place of a normal aerial such as we would like to see erected, but it is an out-door aerial that can be fitted at window-sill level, and as such, the signal to noise ratio must be many times better (very often 20 db .). Its more general use would add greatly to the enjoyment of radio reception and would have the effect of giving new life to an old set.

Where there is really serious interference then a full blooded anti-interference aerial such as the "Eliminoise "*2 and "Skyrod "*3 would have to be considered.

Suppression of Interference

Although regular readers of the "Wircless World" do not require
to be reminded of the fact, the general public should remember that no aerial suppresses interference; it may, if correctly chosen and erected with skill, enable the listener to pick up programmes without interference, but the interference has not been suppressed.

With a "Winrod" or other aerials, mains borne-interference may be present. This can be dealt with by the use of a "Belling-Lee" set lead suppressor L. 300/3*4 which is normally fitted at the plug point supplying the receiver, and ensures that the mains lead going to the receiver is free of interference. This is important as at no other time do the mains come so close to the set. An alternative arrangement is to fit a " Belling-Lee" L.III8/CT*5 to the incoming mains of the house, but this may be rendered ineffective in a terraced house or flats by reradiation through the walls, of interference from neighbouring wiring. It would also be ineffective if the interference is caused by faulty switches or wiring inside the house.

Midland Television Service

At the time of writing it occurs to us that information of the vision and sound frequencies of the Birmingham television station (Sutton Coldfield) may be released before this goes to press. Experience in the London area has shown that there would be a rush by members of the public to have aerials erected, and certainly wide-awake dealers will be anxious to announce to passers-by that they are in fact television minded. We have put ourselves in the position that within a few days of the release of the vital information, Belling \& Lee Ltd. will be able to despatch aerials. We have in fact many orders already on our books.

If rumours are to be believed, the service area will be very great and the potential market enormous.

Belling-Lee Service

Most wireless dealers will be glad to give service on Belling-Lee products. To assist both the dealer and the public, we are issuing window cards to dealers so that it is clear to prospective customers that willing and knowledgeable service is available within. Every dealer
cannot know all the answers, but they are supported by an efficient specialist service department who are here to give prompt attention to their queries.

If this comes to the notice of any dealer who has not yet had a card, and who is interested, will he please get in touch with us giving the name of his preferred wholesaler.

* ${ }_{\text {I }}$ WINROD" (Regd. trade mark) 8 feet, 3 section, window mounting aerial.
L581 Price each 19s. 6d. Supplied EX-STOCK in cartons each containing 6 " WINRODS."
*2 "ELIMINOISE " (Regd. trade mark) anti-interference transformers for attachment to "Skyrod '" vertical aerial or a 6 oft. horizontal aerial.
L308 Pair of transformers with receiver connecting lead L621/5.

Price £4 10s. Od.
L308/K Complete kit with L1221 screened downlead, aerial and earth wire, and insulators. Fo: fitting horizontally. Price $£ 66 \mathrm{~s}$. Od.
*3 "SKYROD" (Regd. trade mark) vertical aerial in 3 sections for chimney mounting.
L5 18 Collector only. Price £4 4s. Od. L618 Complete kit with " Eliminoise" matching transformers, L1221 Screened feeder, earth wire and insulator. Price $£ 10$ 0s. 0d.
${ }^{*} 4$ Set lead suppressor L300/3
Price $£ 219 \mathrm{~s} .6 \mathrm{~d}$.
*5 Capacitor suppressor, centre tapped, for fitting at the meter board or at the source.
L1118/GT Price £1 7s. 6d.

E.M.I. basic training fits you for entry to Coreers in such fields as:-

SERVICE ENGINEERING

DESIGN AND DEVELOPMENT

TECHNICAL SALESMANSHIP TEACHING

TThe Correspondence and College Courses provided by E.M.I. Institutes which cover recognised diplomas such as the City and Guilds, etc. are written and supervised by E.M.I. \star scientists who are specialists in Electronic Science.
Courses are already available in such subjects as Basic Radio, Basic Television, etc., and the prospectus is being constantly extended.
With this basic training you can eventually become a specialist in Television, Radio Communications, Radar, Navigational Aids, Audio Frequency, Medical and various Electronic applications. There are also short courses for Executives, Amateurs, Students, etc.

For full details apply to your local "H.M.V." Radio dealer or direct to :-
The Principal: Professor H. F. TREWMAN, M.A. (Cantab), M.I.E.E., M.I.Mech.E., M.Brit.I.R.E.

E.M.I. INSTITUTES

* The E.M.I. Group includes "H.M.V.", Marconiphone and other important electronic interests

Proprietors. THE GENERAL ELECTRIC CO. LTD. England.

Coil-pack Modification

Two-station Switch Selection with Variable Short-wave Tuning

By L. MILLER

THE need occasionally arises for designing a "compromise" broadcast receiver; that is, a set with switch tuning for the local stations, plus a good normal performance for short-wave reception.

By a simple modification of the present-day widely used " tuning pack," these requirements are easily satisfied, the method used and described here by the writer having the advantage that no additional switching is necessary.

The experiments carried out were on a standard "Weymouth'" two-circuit coil pack, and the values given apply specifically to that company's product, but the principle can easily be adapted, with a little experimentation in capacitor values, for other makes of tuning packs.

Modification Details. - The medium-wave band is fixed-
total capacity of some 220 pF , the inductance of the medium-wave
fore, the Home Service is peaked with the trimmer nearly fully screwed home. A further $150-\mathrm{pF}$ fixed capacitor is, of course, wired across the medium-wave oscillator coil trimmer.

The Light Programme is picked up on the long-wave band, and a total capacity of 320 pF is re-

coil being 153 microhenrys. Allowing for 20 pF due to stray capacities, a fixed capacitor of 150 pF is wired across the medium-wave trimmer, which

tuned to the Home Service on $877 \mathrm{kc} / \mathrm{s}$, which, in the case of the Weymouth pack, requires a
tunes from I_{5} to 65 pF . When the wave-change switch is set at the medium-wave position, there-

Still assuming 20 pF for strays, fixed capacitors of 250 pF are wired across the long-wave

Coil-pack Modification-

trimmers (Ae. and Osc.) and with the aid of approximately 50 pF capacity of the trimmers, the Light Programme is peaked.
It will be noticed that no consideration has been given to the fact that the oscillator inductances are different to that of the aerial coils, but it should be apparent that this is of no import, as once the required capacity is ascertained for the aerial coils, the same capacity is required for the oscillator coils, as the padding capacitors provide the difference in the capacity which is actually required.
Variable Short-wave Tuning.The fixed plates of the two-gang tuning capacitor are wired direct to the high-potential ends of the short-wave coils, and not to the leading-out wires as is usual. It is quite possible to make these leads very much shorter, and so improve the short-wave performance.
In the schematic diagram of Fig. 2 these connections are shown to the fixed plates of the shortwave trimmers, but it may be
more convenient to connect to the grid end of the short-wave coil itself, in which case the correct lug is No. 9 on both coils.

The blue lead of the pack still goes to the control grid of the frequency changer, and the green lead to the oscillator grid (via the $100-\mathrm{pF}$ capacitor.
Initial Setting-up.-The initial setting of the trimmers is quite straightforward-the L.W. and M.W. padders should be screwed fully home, and then unscrewed half a turn, no further adjustment of these padders being necessary.
Switch the tuning pack to the medium-wave position and adjust the medium-wave oscillator trimmer until the Home Service is received; then adjust the medium-wave aerial trimmer for maximum volume.
Switch the tuning pack to the long-wave position and adjust the long-wave oscillator trimmer until the Light Programme is received, then adjust the long-wave aerial trimmer for maximum volume. The four-position switch now reads "Gram," "Light," "Home" and "Short Wave."

C.P.S. Emitron
 New Television Camera

TMHE C.P.S. Emitron is an electronic television pickup tube which has been developed since the end of the war by the E.M.I. Research Laboratories, and gives promise of extending the scope and quality of the B.B.C. television service. Preliminary trials of this new camera tube have been very encouraging; among recent broadcasts for which it was used are the Royal wedding, an Itma programme, and the relay of Cinderella from an Edmonton. theatre.

The Emitron and SuperEmitron, which were developed before the war and are still in use by the B.B.C., give very goodquality television pictures and enable a reasonable variety of programmes to be broadcast. However, they have several limitations. First, it is necessary to have a high level of illumination for the transmission of a
good-quality picture. Studio illumination at Alexandra Palace is uncomfortably intense and the stage illumination for a broadcast direct from a theatre has to be increased to such a degree that it spoils the show for the audience. Outside broadcasts are often of poor quality because the light is inadequate. Secondly, undesirable shading appears in the picture, even when there is sufficient light, and this must be continually corrected by the operating engineers. When the light is poor this shading of the picture (" tilt" and "bend") becomes uncontrollable.
The C.P.S. Emitron overcomes these defects by applying a method known as Cathode Potential Stabilization (hence the initials C:P.S.), which was invented by E.M.I. Research engineers in 1934. As is well known, the Emitron operates as follows: a lens forms an image of the scene
to be transmitted on a mosaic of photo-sensitive elements. The light of the image liberates electrons from these minute particles and as they are lost, positive charges are built up on the mosaic which correspond to the light distribution in the image. The mosaic is then scanned by a highvelocity beam of electrons which discharge these positive charges in succession. As each is discharged, an electrical pulse is imparted to a common electrode known as the signal plate, which passes these pulses on to the amplifier. Unfortunately, besides discharging the mosaic elements, these high-speed electrons also knock out of the mosaic a large number of secondary electrons which spread across the mosaic and reduce the efficiency as well as producing the spurious shading signals referred to above.

In the C.P.S. Emitron the mosaic is stabilized at the potential of the cathode from which the beam electrons come and the scanning beam is itself of relatively low velocity. The electrons, therefore, reach the mosaic at such a low energy level that they cannot knock secondary electrons out of the surface. In this way the undesirable shading signals are eliminated and much higher efficiency attained. The output signal is derived from the current in the lead to the "signal plate," which backs the mosaic, in a similar manner to the Emitron. A further post-war E.M.I. development has enabled the sensitivity of the photoelectric mosaic to be very greatly increased, and the spectral response to be improved.

Intensive work on these methods (all television research was stopped during the war) has culminated in the C.P.S. Emitron. This tube is capable of transmitting satisfactory pictures which are quite free from shading effects, with only normal lighting -such as is required for comfortable working, reading, writing, and considerably less than is normally used on a theatre stage. This is something like fifty times less light than is required by an Emitron and one-tenth that needed by the Super Emitron. Moreover, with quite moderate lighting the aperture of the camera lens can be stopped down

The new camera in use.
to such an extent that great depth of focus can be obtained in
the picture. Since shading signals are entirely absent the camera can be turned from one scene to another without the picture being upset by these troublesome effects, which can be very irritating even when the equipment is under expert control.

The C.P.S. Emitron will enable a great saving in the electric power required to illuminate indoor scenes as well as improving the comfort of the actors, and outdoor broadcasts will be possible until dusk. Indeed, the camera will go on producing a satisfactory picture until failing light stops play in most games.

Manufacturers' Products

Checking Electricity Consumption

A^{N}electronic kilo-volt-ampore meter, designed to give large industrial consumers a warning when the rate of consumption of electricity exceeds a predetermined amount has been introduced by Everett, Edgcumbe \& Co., Ltd., Colindale Works, Hendon, London, N.W. 9.

It operates on the basis of comparing the time taken to charge a capacitor through a resistance, in one case from a voltage generated by the total factory load and in another by a voltage generated in the instrument and which is the "reference."
The instrument integrates the relative time taken to charge the condensers over periods of about five minutes and if the load circuit exceeds the rate of charge of the reference it actuates a relay which can be wired into a local alarm circuit or repeated to any distant part of the factory.

Aerial Connector

THE Burgoyne aerial connector provides means for making a watertight connection between a coaxial or low-impedance balanced pair, feeder and an aerial of the dipole or other resonant type, for which wire or cage elements are employed.

It consists of a massive aluminium casting, the two halves of which are held together by i6 nuts and bolts and weatherproofed by applying a sealing compound to the joints.

Large eye-bolts fitted with ceramic bushes serve as anchorages for the aerial on the outside and the feeder on the inside, soldering tags being
included to give good electrical connections. Rubber and fibre washers make watertight seatings for these bushes.

With co-axial feeders and the centre conductor and sheath joined direct to the two parts of the aerial an unbalanced system results, but this is often used quite successfully for both transmission and reception on the short waves.

The connector appears a little heavy for the purpose, weighing as it does $14 \frac{1}{2} \mathrm{Oz}$ without the feeder. In the case of a 40 -metre doublet it would probably be suspended in the centre of a 66 -foot stretch of wire. However, there is a $\frac{1}{4}$ in hole in the top rib for an anchorage wire if facilities allow.

The Burgoyne connector is distributed by Mail Order Supply Co., 24, New Road, London, E.I, and
the price is $24 / 6$ complete with sealing compound and full assembly instructions.

Television Pre-amplifier

AT the limit of the television service area greater amplification than that provided in the average receiver is sometimes needed and is conveniently obtained from a preamplifier. The type TAB, produced by Clive Courtenay \& Co., of 5 , Horsham Road, Dorking, Surrey, has two R.F. stages using SP_{41} valves. It is designed for $80-\Omega$ input and output impedances and gives a gain of 30 db for a bandwidth of $7 \mathrm{Mc} / \mathrm{s}\left(4 \mathrm{I}-4^{8} \mathrm{Mc} / \mathrm{s}\right)$ so that it covers both sound and vision channels.

Designed for use with coaxial feeders it is easily connected between the aerial feeder and the receiver. It has its own internal power supply unit and is in a' steel case measuring $7 \frac{1}{4} \mathrm{in}$ by $5 \frac{1}{4} \mathrm{in}$ by $2 \frac{5}{8}$ in. There is a gain control operating by grid bias, compensated for input capacitance changes, on the first R.F. stage. The two valves are coupled by a band-pass filter and there are input and output transformers matching the valves to 80Ω

A padder unit designed for use in conjunction with the pre-amplifier is also available. This is a resistance network of $80-\Omega$ input impedance providing three outputs each at 80Ω. There is a loss of some 16 db between the input and each output, so that with the pre-amplifier the overall gain to each output becomes about I4 db. It measures $\mathrm{I} \frac{1}{2} \mathrm{in}$ by $5 \frac{1}{\frac{1}{2}} \mathrm{in}$ by $\frac{1}{2} \mathrm{in}$ and enables three receivers to be used on a common aerial without interaction.
Books issued in conjunction with "Wireless World"
WIRELESS DIRECTION FINDING. By R. Keen, M.b.E., Price post B.Eng. (Hons.), Fourth Edition, XII+ 1,059 pages \quad... \quad... $45 /-\quad 45 / 9$
TELEVISION REGEIVING EQUIPMENT, by W. T. Cocking,
M.I.E.E., Second Edition
....
... 12/6 12/11
FOUNDATIONS OF WIRELESS. Fourth revised Edition, by M. G. Scroggle, B.Sc., M.I.E.E.
IRELESS SERVIGING MANUAL, by W. T. Cocking, M.I.E.E., Seventh EditionHANDBOOK OF TECHNICAL INSTRUGTION FOR WIRELESSTELEGRAPHISTS, by H. M. Dowsett, M.I.E.E., F.Inst.P.,and L. E. Q. Walker, A.R.C.S., Eighth Edition 30/-30/- $30 / 8$
BASIC MATHEMATICS FOR RADIO STUDENTS, by F. M. Colebrook, B.Sc., D.I.C., A.G.G.I. $10 / 6 \quad 10 / 10$
GUIDE TO BROADCASTING STATIONS, Third Edition 1/1
RADIO WAVES AND THE IONOSPHERE, by T. W. Bennington 6/- $6 / 3$
RADIO DATA CHARTS, by R. T. Beatty, M.A., B.E., D.Sc.Fourth Edition-revised by J. McG. Sowerby B.A., Grad.J.E.E 7/6$7 / 11$
Obtainable from all leading booksellers or irom

Push-pull Input Circuits

Part 2.-Cathode-follower Phase-splitter

By W. T. COCKING, m.I.E.E.

ONE of the most widely used phase-splitters has the form of a cathode-follower, but with a coupling resistance in the anode as well as in the cathode circuit. It is by no means new and it preceded the cathodefollower as such, probably in time, and certainly in popularity. The earliest reference ${ }^{1}$ to it which the writer has been able to trace is October 1935.

In basic form the circuit is the same as that of Fig. 7 (Part I), but with the input voltage applied between grid and earth instead of between grid and cathode. It is shown in Fig. 9 in its commonest form. It has the very desirable feature that the input and both output voltages all have one common earth terminal, so that it can readily beused after a circuit which has one of its output terminals earthy. The input voltage is E_{AB} and the outputs are $\mathrm{E}_{3 \text { : }}$ and E_{12}.

If the bias resistor R_{b} in Fig. 9 (a) is considered as short-circuited to alternating currents it is obvious that the input voltage E_{AB} must be equal to the sum of the gridcathode voltage $e_{g c}$ and the cathode output voltage $\mathrm{E}_{3 .}$. With resistive circuit elements it is also obvious that all these voltages are in the same phase. Therefore, E_{3} : must always be less than the input voltage by the amount of the grid-cathode voltage. The " amplification " $\mathrm{A}_{c}=\mathrm{E}_{3} / \mathrm{E}_{\mathrm{AB}}$ is thus always less than unity.

With the unearthed input circuit of Fig. 7 an amplification of ro-20 times is possible, but when one input terminal is earthed the amplification drops to less than unity. This is the price which must be paid for the convenience of the earthy input circuit. There is, however, also a considerable gain in linearity, through the negative feedback provided by R_{c}.

It is obvious that the circuit of Fig. 9 suffers from the same defect as that of Fig. 7 at low frequencies, which is that the
output at the anode tends to increase relative to the output at the cathode because of the rising impedance of C_{d}, the decoupling capacitor. By analogy with Fig. 7 one would expect to obtain equality of the outputs at other frequencies when $\mathrm{R}_{a}=\mathrm{R}_{c}$ and this is actually the relation usually adopted in practice.

However, strictly speaking, this does not equalize the outputs, for the anode current of the valve is not the only current through R_{a} and R_{0}. There is a current through the grid leak R_{g} which flows through R_{c} and increases the cathode output. At high frequencies there are also currents through the grid-cathode and grid-anode capacitances $\mathrm{C}_{g c}$ and $\mathrm{C}_{g a}$. These currents are not in phase with the anode current and

(a)
all have a negligible effect, the equivalent circuit has the form of Fig. 9 (b). The usual expression for the amplification is given by Eqn. (I) in Appendix II and it shows the cathode and anode outputs as being equal when $\mathrm{R}_{a}=\mathrm{R}_{e}$. It is accurate only when the frequency is such that the capacitances exercise a negligible effect and when R_{g} is infinitely large. This last condition is approached very closely in practice if R_{g} is returned to a potential divider across the H.T. supply inst ad of to the cathode circuit. This is shown in Fig. io and in using Eqn. (I) for this circuit we write $\mathrm{R}_{b}=0$, since there is no point in providing a bias resistor when the bias is otherwise obtained.

Although it is the better from this point of view the circuit of Fig. Io is not often used. It demands more parts than the other and the conditions for correct grid bias are rather more critical.

With cathode bias (Fig. 9) and when $\mathrm{R}_{a}=\mathrm{R}_{c}$, as is usual in practice, Eqn. (2) gives the un-

(b)

Fig. 9. The usual circuit of a cathode-follower type phase-splitter is shown at (a) and the equivalent circuit for low and medium frequencies at (b).
they have the effect of making the anode and cathode output voltages unequal in amplitude and of giving them a phase difference which is not equal to the ideal 180°.

Over the middle range of frequencies, where the capacitances
balance in the two outputs; that is, the value of this equation is the fraction by which the cathode exceeds the anode output. It is at once obvious that a pentode is likely to be better than a triode, for the numerator will be
smaller owing to the higher A.C. resistance of the valve, and the denominator may well be somewhat larger.

However, the pentode is inconvenient in this circuit because of the screen supply which must be decoupled to cathode if the valve is not to become effectively a triode. This introduces further possibilities of error at extremes of frequency. A triode is, therefore, almost invariably used.

It is usual to make R_{a} and R_{c} equal and about equal to r_{a}, while R_{b} is rarely more than one-tenth of R_{a}. Under these conditions the unbalance is of the order of

Fig. 10. A motified form of bias circuit is shown here.
$5 / g_{m} \mathrm{R}_{g}$. Now R_{g} can be as high as $2 \mathrm{M} \Omega$ in most cases and g_{m} will rarely be less than $2 \mathrm{~mA} / \mathrm{V}$. Under these conditions the unbalance will be 0.125 per cent. In no practical case is the unbalance from this cause likely greatly to exceed this figure, so that it can nearly always be ignored. It is likely to reach practical importance only when R_{g} is below about noo $\mathrm{k} \Omega$.

At high frequencies the equivalent circuit has the form shown in Fig. II, ignoring the anodecathode capacitance of the valve. If the current i_{1} through R_{g} can also be ignored, and it has been indicated above that this usually is permissible, the unbalance is given by Eqn. (4) of Appendix II. The expression is in two parts one with and one without the operator j attached to it. The part without j indicates a differ-
ence of amplitude between the anode and cathode outputs, the voltages so compared being correctly in opposite phase. Such an error can be corrected by a subsequent balance adjustment except in so far as its frequencydependent term is concerned.

The part prefixed by j indicates the fractional amplitude of a component of one output in phase quadrature with the main output. It cannot readily be corrected in any subsequent circuit.

In a typical practical case we may well have $g_{m}=2 \mathrm{~mA} / \mathrm{V}$, $\mathrm{R}_{a}=\mathrm{R}_{\mathrm{c}}=\gamma_{a}=20 \mathrm{k} \Omega$, and $\mathrm{R}_{b}=2 \mathrm{k} \Omega$. If C_{c} $=100 \mathrm{pF}$ and it is unlikely to be higher, and $\mathrm{C}_{g c}=5 \mathrm{pF}$, the phase unbalance at lo kc / s is 0.02 per cent. The inphase unbalance is some 0.2 per cent.

These figures are so small that they are without much practical significance. In spite of the fact that the cathode-follower phasesplitter is inherently unbalanced, the magnitude of the unbalance is so small that for all ordinary purposes in A.F. amplifiers it is quite negligible. Practically speaking, it is necessary only to make R_{a} and R_{c} equal, and also the shunt capacitances C_{a} and C_{6}, and to keep the grid leak of as ligh a value as possible. The capacitances C_{a} and C_{c} are usually composed mainly of the input capacitances of the two halves of the following push-pull amplifier, and so normally ti nd to be approximately equal. It is usually unnecessary to equalize them artificially.

As already mentioned the lowfrequency unbalance is the same as with an earlier circuit and is given by Eqns. (7) and (8) Part I. It is almost entirely a phase unbalance and can be made negligible by the use of a large enougn value for the decoupling capacitance $\mathrm{C}_{\boldsymbol{d}}$. Under normal conditions it should have a minimum value of $8 \mu \mathrm{~F}$.
The input impedance of the stage is high. It is defined as the ratio of the input voltage E_{AB} to the total current flowing from the input voltage source into the input lead. Referring to Fig.
$\mathrm{II}_{1}, Z_{i n}=\mathrm{E}_{\mathrm{AB}} /\left(i_{1}+i_{2}+i_{3}\right) . \quad \mathrm{At}$ low and medium frequencies i_{2} and i_{3} are negligibly small, and it has already been shown that $i_{1}=e_{q g} / \mathrm{R}_{g}$; therefore, $Z_{i n}=$ $R_{g} \mathrm{E}_{\mathrm{AB}} / e_{g c}=\mathrm{R}_{g} \mathrm{E}_{\mathrm{AB}} /\left(\mathrm{E}_{\mathrm{AB}}-\mathrm{E}_{32}\right)$ $=\mathrm{R}_{g} /\left(\mathrm{I}-\mathrm{A}_{c}\right) . \quad \mathrm{By}$ inserting typical values into Eqn. (I) it is found that A_{c} usually lies

Fig. II. The circuit equivalent at high frequencies to that of Fig. 9 (a) is given here. The anode-cathode capacitance of the valve can usually be ignored without serious error.
between 0.85 and 0.95 . If it is $0.9, Z_{\text {in }}=10 R_{g}$, and with the usual $2 \mathrm{M} \Omega$ for R_{g}, the input impedance becomes $20 \mathrm{M} \Omega$.

A similar effect occurs at high frequencies with $\mathrm{C}_{g c}$ as long as E_{AB} and E_{3}, are nearly in phase. As A_{c} approaches unity, the cathode-earth voltage approaches the grid-earth voltage in value, and the difference between them, which is the grid-cathode voltage, is small, so that the current is small and the effective in r^{\prime} capacitance from the element becomes very small and tends to zero.

The effect of the grid-anode capacitance is increased, however. In the limiting case when $\mathrm{A}_{a}=\mathrm{I}$, if $E_{A B}$ and $E_{: 1}$ are in phase, the voltage acting to drive the current i_{3} through $\mathrm{C}_{g a}$ is $\mathrm{E}_{\mathrm{AB}}+\mathrm{E}_{1}=$ $2 \mathrm{E}_{\mathrm{AB}}$, and then the effective input capacitance is $2 \mathrm{C}_{g a}$.

With normal values of components and over the audiofrequency range it is sufficiently accurate for most ordinary purposes to take the input impedance as comprising a resistance $10 \mathrm{R}_{g}$ shunted by a capacitance $2 \mathrm{C}_{g a}$. The inequalities of, and phase errors between, the two outputs are negligible, and the amplification A_{c} [given by Eqn. (1)] is of the order of o 9 .

No mention has so far been made of the output impedance of the stage. That at the cathode tends

Push-pull Input Circuits-

towards that of a cathode follower whereas that at the anode conforms to the output impedance of a stage with negative current feedback. The cathode output impedance is much lower than r_{a} whereas the anode output impedance is much higher than $\psi_{a^{+}}$In normal applications of the circuit, however, these facts are without much practical significance.

In choosing circuit values it is generally satisfactory to make R_{a} and R_{c} about one to two times the working value of r_{a} and to make R_{g} as high as possible without making it so high that reverse grid current in the valve, or surface leakages on components, become troublesome. Because the input resistance is about io times R_{g}, the value of the input coupling capacitance
with a coupling resistor of $.2 \mathrm{R}_{a}$, the same decoupling resistor R_{d} and bias resistor R_{b}, and the same H.T. supply voltage, but the linearity will be better because of the negative feedback provided by R_{c}. The output referred to above is the total output, $\mathrm{E}_{32}+$ \mathbf{E}_{21}.

The exact conditions can readily be calculated by the usual graphical method. The D.C. load line for a resistance $\mathbf{R}_{a}+\mathrm{R}_{b}+\mathrm{R}_{\boldsymbol{e}}+$ R_{d} is drawn from the H.T. supply voltage on the anode-volts/anodecurrent valve curves and the desired operating point is selected; the mean anode current I_{a} and anode-cathode voltage $\mathrm{V}_{a c}$ are then known. The A.C. load line for $\mathrm{R}_{a}+\mathrm{R}_{b}+\mathrm{R}_{c}$ is then drawn through the point.

It is convenient to tabulate the anode currents and gridcathode ` voltages corresponding

Fig. 12. Characteristics of the EF37 valve as a triode with load lines $A B$ ($36 \mathrm{k} \Omega$), and EB ($37 \mathrm{k} \Omega$) and a bias line CD ($\mathrm{Ik} \Omega$).
can be about one-tenth of that appropriate to the value of R_{g} alone.

The decoupling resistor R_{d} should be as high as possible consistent with obtaining the requisite output from the stage, and C_{d} should be large, say $8-16 \mu \mathrm{~F}$. The bias resistor R_{b} must be chosen to suit the valve and its operating conditions, but is usually $\mathrm{I}-2 \mathrm{k} \Omega$.

Turning now to the output available, this is of the same order as that given by the same valve working as a normal amplifier
to the intersections of the line with the valve curves and to convert them to changes of current and voltage about the mean values by deducting these mean values from them. The cathodeearth voltage is then the product of the current changes and $\mathrm{R}_{b}+$ R_{c} while the cathode output voltage is the product with R_{c}. The sum of the grid-cathode voltage changes and the cathodeearth voltage changes give the grid-earth voltage changes, - the input. The dynamic characteristic is the plot of cathode output
against input voltages and is the actual working characteristic taking feedback into account.

This procedure, while easy, takes some little time to carry out and it is helpful, therefore, to have a quick means of roughly estimating the output. With a triode the anode-cathode voltage cannot usually be swung below $25+\mathrm{V}_{c} / 6$ volts (where V_{c} is the voltage across $C_{\dot{d}}$) without driving the valve into grid current.

The maximum anode-cathode voltage is usually about the same amount less than the mean voltage across C_{d}; i.e., $\mathrm{V}_{c}-25-\mathrm{V}_{c} / 6$ volts. The total swing is thus ${ }_{3}^{2} \mathrm{~V}_{c}-50$, and the peak outputs at anode and cathode are each $\left(\frac{2}{3} \mathrm{~V}_{c}-50\right) / 4$. This is a very rough figure, but is useful for an initial estimation of the possibilities. If $\mathrm{V}_{c}=200 \mathrm{~V}$, for instance, an output at anode and cathode of the order of 20 V peak each can be expected. With 300 V the output will be about 37.5 V peak.

The mean anode-cathode voltage is about $V_{c} / 2$ and the mean anode current about $\mathrm{V}_{c} / 2$ $\left(2 \mathrm{R}_{a}+\mathrm{R}_{b}\right)$. The mean cathodeearth voltage is about $\frac{\mathrm{V}_{c}}{2}$. $\frac{\mathrm{R}_{a}+\mathrm{R}_{b}}{2 \mathrm{R}_{a}+\mathrm{R}_{b}} \approx \frac{\mathrm{~V}_{c}}{4}$. This is important, for with many valves there is a maximum permissible heatercathode voltage and it is usually desirable to earth the heater. In the case of the EF37 valve, for instance, the rating is roo V. There is also for this valve a maximum figure of $20 \mathrm{k} \Omega$ quoted by the makers for the resistance between heater and cathode, so that $R_{a}+R_{b}$ must not exceed $20 \mathrm{k} \Omega$.

With such a valve therefore, V_{c} is limited to about 400 V and the outputs to about 55 V peak, and the mean anode current will be of the order of 5 mA . This is within the maximum rating of 6 mA .

As an example of the determination of operating conditions and to illustrate the degree of accuracy of this rough method, the dynamic characteristic will now be deduced by the accurate method given earlier. We shall take an EF37 valve strapped as a triode. Since $\mathrm{R}_{b}+\mathrm{R}_{c} \leqslant$ $20 \mathrm{k} \Omega$, we shall take $\mathrm{R}_{a}=\mathrm{R}_{c}{ }^{c}=$
$18 \mathrm{k} \Omega$, since this is the nearest preferred value in the 5 per cent and ro per cent tolerance ranges. The valve data places a limit of

Fig. I3. Dynamic characteristics of the phase-splitter.
$3 \mathrm{M} \Omega$ on R_{g}, and we can with confidence settle this at once at the standard value of $2.2 \mathrm{M} \Omega$. We shall take V_{c} as 400 V .

The valve curves are shown in Fig. 12. As we do not know R_{b} at this stage we cannot draw the final load line, and we start off by drawing AB for $36 \mathrm{k} \Omega$. It is obvious that the bias should be about -6 V . With an input of 5 V peak, the grid-cathode voltage would swing from - I V to - IIV and grid current should just be avoided. The anode-cathode voltage would swing from 105 V to 308 V with a mean value of 220 V . The outputs would be - II5 V and +88 V so that there is considerable distortion. The cathode-earth voltage would be $(400-220) / 2$ $=90 \mathrm{~V}$ and the anode current 5 mA , so that the valve would operate within its rating.

A slightly lower bias would be better, but it cannot be much lower without the rating of the valve being exceeded. It is convenient to use a standard resistor for R_{b}, so let us try $i k \Omega$. We draw the bias resistor line ${ }^{2}$ by joining the intersections of the current ordinates with the grid-volts curves corresponding to the product of the current and the resistance. This is the line CD in Fig. 12. The new load line is now for $37 \mathrm{k} \Omega$ and is BE , and the no-signal operating point is the intersection of CD and BE at a current of 5.3 mA . The heater-cathode voltage is $5.3 \times$ $19=100 \mathrm{~V}$. It is just on the rating of the valve and it would be desirable to reduce it some-
what by reducing the H.T. voltage. The grid bias is 5.3 V .

The next step is to tabulate the grid voltages and the corresponding anode currents as in columns I and 2 of the table. Then prepare columns 3 and 4 for the changes of voltage and current, by deducting the nosignal values from columns I and 2, and produce column 5 by multiplying the figures of column 4 by the total cathode resistance $\mathrm{R}_{b}+\mathrm{R}_{c}=19 \mathrm{k} \Omega$; this gives the change of cathode voltage. The sum of columns 3 and 5 , in 6, gives the change of input voltage. Finally, column 7 is prepared by multiplying the figures of column 4 by the resistance R_{c} across which the output voltage is developed, in this case by $18 \mathrm{k} \Omega$. The output at the anode is the same but with the signs reversed.

The relation between input and output voltages is shown by the curve of Fig. I3 and it will be seen that this is a straight line within the limits of accuracy imposed by rather small-scale graphical calculations. The maximum input is set by the onset of grid current, and is at a grid-cathode voltage of -I , corresponding to a grid-earth potential of +5 I .8 V , the corresponding output being +45 V . The amplification is $45 / 5$ I $8=0.87$ times.
The output of 45 V peak is somewhat below the figure of
giving a preliminary indication of the output. In this case the output is limited by grid current and this indicates that a somewhat higher value of bias resistor would be better. There are, however, signs in Fig. I3 that the curve is starting to bend beyond - 50 V input and but little increase in bias resistance would be practicable.

A stage such as this will just feed a pair of push-pull PX_{4} valves directly but in view of the high value of H.T. supply needed there is nothing to spare for decoupling. Fortunately in this case decoupling is usually unnecessary.

The heater-cathode voltage with no signal is some roo V , the maker's maximum rating. On full output it rises to 145 V peak. It is not clear from the published figures whether this is permissible or not. Since a large heater-cathode voltage is normally used only with a superimposed signal it has probably been taken into account.

It will be seen from this that the conditions are rather tight when the phase-splitter is called on to feed a triode output stage directly and because of this the writer usually prefers to use an intermediate push-pull stage with an amplification of the order of 10 times. The phase splitter is then called on to provide an output of 4.5 volts or so only,

TABLE

$\begin{gathered} 1 \\ \text { Grid- } \\ \text { cathode } \\ \text { volts } \end{gathered}$	2 Anode current (mA)	3 Change of grid- cathode volts	4 Change of Anode current (mA)	5 Change of cathode volts	6 Change of input voltage	7 Change of output voltage
-1	7.8	$+4.3$	+2.5	+47.5	$+51.8$	+45
-2	7.2	+3.3	+1.9	+36.1	+39.4	+34.2
3	6.6	+2.3	+1.3	+24.7	$+27.0$	+23.4
-4	5.95	+1.3	+0.65	+12.15	+13.45	+11.65
-5	5.45	+0.3	+0.15	+2.85	+3.15	+2.7
-5.3	5.3	0	0	0	0	0
-6	4.8	-0.7	-0.5	-9.5	-10.2	-9.0
-7	4.3	-1.7	-1.0	-19.0	-20.7	-18.0
-8	3.75	-2.7	-1.55	-29.5	-32.2	-27.9
-9	3.2	-3.7	-2.1	-40.0	-43.7	-37.8
-10	2.65	-4.7	-2.65	-50.4	-55.1	-47.7
-11	2.3	-5.7	-3.0	-57.0	-62.7	-54.0
-12	1.8	-6.7	-3.2	-61.0	-67.7	-57.5

55 V estimated earlier, but the agreement is reasonable since the method of estimation is a very rough one intended only for
and the valve can very easily be operated well within its limits.

In conclusion, it must be pointed out that condition of R_{a} and R_{c}

Push-pull Input Circuits-

being equal, which has been assumed in all the foregoing, is one which must be closely observed in practice. It is usually desirable to employ resistors matched within about 2 per cent, but the usual tolerance of ± 20 per cent on actual value is quita satisfactory.

APPENDIX II

Referring to the circuit of Fig. $9(b)$,
$\mathrm{U} \approx \frac{i_{2}+i_{3}}{i_{a}} \approx \frac{\left(r_{a}+\mathrm{R}_{b}+2 Z_{c}\right)\left(\mathrm{I}+Z_{g}\right.}{\mu Z_{g}}$
where $g_{m}=\mu / r_{a}=$ mutual conductance.

When R_{g} is not infinite and $\mathrm{R}_{a}=$ R_{c}, the unbalance is
$\mathrm{U}=\frac{\mathrm{E}_{32}-\mathrm{E}_{21}}{\mathrm{E}_{21}}=\frac{i_{1}}{i_{a}} \approx$

$$
\frac{\mathbf{I}+\frac{\mathrm{R}_{b}+2 \mathrm{R}_{c}}{r_{a}}+g_{m} \mathrm{R}_{b}}{g_{m} \mathrm{R}_{g}}
$$

provided that $i_{1} \& i_{a}$
At high frequencies the circuit has the form of Fig. ir. Assuming that $\mathrm{C}_{a c}$ and R_{g} have a negligible etfect, the unbalance is
$\left.Z_{g c} / Z_{g a}\right)+2 \mu Z_{c} Z_{g c} / Z_{g a}$
under the conditions that the reactance of C_{d} is negligibly small,

When $Z_{g o}=Z_{g a}=I / j \omega C_{g o}$ and $\mathbf{Z}_{a}=\mathrm{Z}_{c}=\mathrm{R}_{d} /\left(\mathbf{I}+j \omega \mathrm{C}_{c} \mathrm{R}_{c}\right)$ this becomes:

$$
\mathrm{U} \approx \frac{2 \omega \mathrm{C}_{g c}}{g_{m}}\left[\mathrm{I}+\frac{\mathrm{R}_{b}}{\gamma_{a}}+\left(g_{m}+\frac{2}{\gamma_{a}}\right) \frac{\mathrm{R}_{c}}{\mathrm{I}+\omega^{2} \mathrm{C}_{c}{ }^{2} \mathrm{R}_{c}{ }^{2}}\right]+j \frac{2 \omega \mathrm{C}_{p c}}{g_{m}} \cdot \frac{\omega \mathrm{C}_{c} \mathrm{R}_{c}}{1+\omega^{2} \mathrm{C}_{c}{ }^{2} \mathrm{R}_{c}{ }^{2}}\left(g_{m} \mathrm{R}_{c}+\frac{2 \mathrm{R}_{c}}{r_{a}}\right)
$$

References

that $R_{g}=\infty$ and that $R_{a}=R_{0}$,

$$
\begin{align*}
& \mathrm{A}_{c}=\frac{\mathrm{E}_{32}}{\mathrm{E}_{\mathrm{AB}}}=\mathrm{A}_{a}=-\frac{\mathrm{E}_{12}}{\mathrm{E}_{\mathrm{AB}}}= \\
& \frac{g_{m} \mathrm{R}_{c}}{\mathrm{I}+\frac{\mathrm{R}_{b}+2 \mathrm{R}_{c}}{Y_{a}}+g_{m}\left(\mathrm{R}_{b}+\mathrm{R}_{c}\right)} \tag{1}
\end{align*}
$$

Book Review

Klystron Tubes. By A. E. Harrison. Pp. $271+x$: 155 figures and charts. McGraw-Hill Publishing Company, Aldwych House, Aldwych, London, W.C.2. Price 17 s 6 d .

THE word "Klystron" is taken from the Greek, and is derived from the " breaking of waves in the sea," as they do whenever the wind and shallow ground force them to move along bodily. The higher portions on the crest of the wave are then moving faster than the lower portions in the troughs, with the result that the higher portions catch up with the lower ones. This produces a progressively steeper slope of the front of the wave, until finally the wave topples over, disintegrating into foam and spray.

A stream of electrons moving along in one particular direction can be made to behave in a fashion not unlike the above described wave if we superimpose a rapidly alternating velocity on the common uniform velocity of the electrons. Then slower moving groups will be immediately followed by faster moving groups, with the result that the faster ones catch up with the slower ones, eventually, and form what is called a "bunch." The rapidly alternating velocity is impressed on
the stream of electrons by an electrode consisting of a pair of grids connected to and surrounded by an external circuit; this is called the "buncher." It will now be clear why a device based on a process as just described has been called a "Klystron." To complete this rough description; when the beam has been "bunched," that is to say, once there is a strong alternating component of current density in the beam, it is passed through an electrode similar to the "buncher" in every respect, but called the "catcher." There the alternating component of beam current gives rise to an alternating voltage across the grids, which can and should be larger than the voltage across the grids of the "buncher," which originally gave rise to the alternating velocity component in the electron beam.

The Klystron tube, or valve, was first described in papers by the brothers Varian and W.W. Hansen working in the Physics Department of Stanford University, California, not long before the outbreak of World War II. Later on development of the Klystron was carried on by the Sperry Gyroscope Company, a firm very much concerned with aids to navigation and blind
flying and blind landing systems. Dr. Harrison, now Assistant Professor of Electrical Engineering at Princeton University, was formerly Klystron Applications Engineer at Sperry's. He is thus very well qualified to write a monograph on the Klystron, to the practical and theoretical progeess of which he has himself contributed so much.
This is a book mainly addressed to the user and to the designer of Klystron tubes. By user here is meant somebody who conceives, engineers and develops, for instance, communication systems using Klystrons, or radar systems involving Klystrons - not somebody who merely takes a new Klystron out of a box and plugs it in place when the old one has failed. The book should also be of interest to those who teach modern radio engineering and who wish to have a solid and authoritative account of the principles and the theory of the Klystron on which to base their teaching. The mathematics employed in the book is of a standard implying familiarity with the elements of differential and integral calculus, and is marshalled with great care and with a view to clarity and simplicity. Though Bessel functions are employed, this should not dismay anyone who has realized that they are merely the cylindrical analogue of the familiar circular functions, to which they are indeed asvmptotic in most cases.

The Klystron in all its ramifications is treated in great detail and many diagrams are given both of theoretical and practical results. A special chapter on power supplies will be very welcome to users who are new to the field, similarly a chapter on microwave measurement techniques. Design charts. a glossary of terms and symbols and a very comprehensive bibliography round off the book which should form a valuable addition to many technical libraries.
R. K.

Books Received

The World Radio and Television Annual.-Fdited by Gale Pedrick. Although primarily concerned with programme matter, this annual contains a number of interesting contributions on the broadcasting organizations of various countries. Pp. 192, with many illustrations. Sampson Low, Marston and Co., 43, Ludgate Hill, London, E.C.4. Price i2s 6d.
These You Can Hear.-By W. Norman Stevens. Most of the pages in this booklet are devoted to descriptions of overseas broadcasting stations. It also includes a wavelength-frequency conversion chart. Pp. 32, illustrated. Amalgamated Short-TVave Press, Ltd., 57, Maida Vale, Paddington, London, W.9. Price 2s.

Commercial Disc Recording

Informal Lecture and Discussion at the I.E.E.

A^{T}T a meeting of the Radio Section of The Institution of Electrical Engineers on 9th December, 1947, an informal lecture on "Commercial Disc Recording and Processing " was given by B. E. G. Mittell, M.I.E.E. Mr. Mittell stated that at present commercial conditions appeared to confine the disc record to the speed, diameters and groove spacing which were in common usage.

Commercial records were, perhaps, too tied to their traditional paths, and it was necessary to consider what steps could be taken to adopt improved techniques, . consistent with maintaining the continuity requisite to avoid adverse reaction from the buying public. Mr. Mittell then put forward proposals for the standardization of groove and stylus shape and recording characteristics.

Discussion was particularly invited towards a measure of agreement in this country, and an exchange of views elsewhere.

With the aid of lantern slides and exhibits the manufacture of commercial disc records was described, starting with the studio and ending with the finished record.

Demonstrations were given of recorded quality and surface noise successively in the original recording, the metal "mother" and the "pressing." Recording up to 20 kc / s was also demonstrated.

The discussion which followed indicated that there was no fundamental disagreement with the proposals for standardization of groove, stylus and recording characteristics put* forward by the opener. It was thought that a preliminary committee on which the principal British record producers were represented would have no difficulty in reaching tentative agreement, and that their findings could then form the basis of a British Standard.

Attention was given mainly to recording at 78 r.p.m. and it was pointed out that the proposed

Proposals for standardization of groove, reproducing stylus and recording characteristic put forward by Mr. Mittell.
ing and reproducing systems could be reduced to a satisfactory low level. Even when the response of the reproducer, or of the ear of the listener, was restricted, the subtle improvement resulting from the recording of high, even ultrasonic, frequencies could be detected. It was thought that this might be explained on the basis of improved transient response.

The only justifiration for a rising characteristic, with subsequent correction in the reproducer, was the relative reduction of surface noise. Many speakers thought that the proper approach would be to reduce noise at its source by research into alternative materials for the record.

Vinyl plastics had been given extensive trials as an alternative to standard shellac mixes and had shown considerable promise. They were, however, more expensive, and
preliminary market research in America seemed to indicate that the public did not yet regard the improvement as worth the extra cost. The absence of abrasive meant that more care would have to be taken to ensure a correctly shaped needle point, and specially designed pickup movements might be needed, owing to the reduced elasticity of the groove wall. It was pointed out that the recording characteristic was intimately bound up with the properties of the record material and that a statement of mechanical impedance limits at the reproducing point should be included in any standardization of frequency characteristic.

Groove wear during playing was discussed and it was stated that sapphire points did not necessarily damage the groove walls. A record which had been played 1,000 times
thought that some degree of preemphasis of high frequencies was
desirable with present recording emphasis of high frequencies was
desirable with present recording materials, but that the amount proposed by the N.A.B. was excessive and would lead to tracing distortion at the modulation levels usually recorded on commercial discs. A rise of 3 db from $3,000 \mathrm{c} / \mathrm{s}$ to 6,000 c / s and a further 3 db from 6,000 c / s to $\mathrm{I} 2,000 \mathrm{c} / \mathrm{s}$ was suggested as a suitable compromise.

There was general agreement that an extended high-frequency response was worth while, provided that distortion components in both record-
recording characteristic put forward by the N.A.B. of America was essentially a $33 \frac{1}{3}$ r.p.m. standard ; it could not be said to have met so far with universal acceptance even in the United States. Most speakers
tortion components in both record-
家
by a commercial pick-up with $38-\mathrm{gm}$ vertical weight on the sapphire point was demonstrated by way of proof.
Opinions differed on the expectations of life of sapphire points. Some thought that wear could be detected after 50 playings, others that 2,000 playings could be obtained with a $30-\mathrm{gm}$ pick-up before the width of the flat reached o.oozin. In the absence of the grinding-in process the shape of sapphire and diamond styli was of paramount importance in controlling surface noise.
The development of lightweight pickups and the demand for automatic record changers meant that "permanent" points were essential. Fears of trouble through breakage were largely unfounded. With a cantilever-sprung mounting, giving vertical compliance, sapphire points could be dropped several inches on to a disc without risk of fracture.

What It Is, and How To Use It

By "CATHODE RAY"

IHAVE been asked to do something to clear up the great mystery of the small j-for those to whom it is a mystery. Apart from any mystery that may be considered to attach to mathematics in general, j seems to be surrounded by an aura of special mystery, akin to occultism and spooks. The idea is that $j=\sqrt{ }-\mathbf{r}$, which is obviously incomprehensible, seeing that no number when squared equals $-\mathbf{I} . \quad V-\mathbf{I}$ is openly referred to in sober mathematical works as an "imaginary number"; and when the bewildered student seeks light on this it is explained to him that imaginary quantities (i.e., those in which $\sqrt{ }-I$ appears as a factor) extend into some other dimension, which does exist but cannot be visualized by the human mind. Here we recall the stories of people who have suddenly and mysteriously disappeared, and the explanation that somehow they have slipped into a fourth dimension which is outside normal human experience or comprehension. At that point the student is tempted to give up.

Well, there is something in all this, but there is no need to let it hinder one from using j for solving A.C. calculations. If it worries you, you can ignore all the \checkmark - I business. Actually, however, even its unimaginableness may be a help to those, like myself, who are unhappy about any mathematical operations that they cannot visualize.

First let me say that I am not going to attempt a complete treatise on j. There is at least one whole book devoted to it, and extensive parts of many other books; and the Editor has better use for his precious paper supply than republishing at length what can be found elsewhere. Anybody who wants to be able to handle A.C. calculations intelligently and effectively ought to get down to it and study j until its use is quite natural and familiar. There is no other way. I suggest Colebrook's " Basic Mathematics for Radio

Students"; and there are some concise practical notes (Colebrookinspired) in Hague's fine book " Alternating Current Bridge Methods." All I hope to do is to show that j is worth knowing and can be understood by anybody who can cope with elementary algebra and geometry.

What use is j, then ? Students of electricity in general, and of radio in particular, start with D.C., and (unless hopelessly dim) soon find their way about D.C. circuits quite confidently. It is when they tackle A.C. that the trouble begins. It is like trying to

Fig. I. Simple
A.C. circuit to illustrate the meaning of j.
see exactly in what order a trotting horse puts down its feet; they never keep still long enough. Even when one has become accustomed to using fixed numbers for reckoning the strength of something that is rapidly varying all the time, and has grasped the idea of two new sorts of circuit element to add to resistance, there is the difficulty that these new sorts (inductive and capacitive reactances), although reckoned in ohms, cannot just be added to resistive ohms in a straightforward sensible manner.

Take an example of the simplest possible circuit that contains all three (Fig. I). I assume you know all about how to work out the reactances $\left(\mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{~L}=\omega \mathrm{L}\right.$: $\left.\mathrm{X}_{\mathrm{c}}=\mathrm{I} / 2 \pi f \mathrm{C}=1 / \omega \mathrm{C}\right)$. What one generally wants to know in this sort of situation is (a) the strength of current that will flow, and (b) the phase of the current relative to the voltage. If on could just add up all the ohms, $40+35+25=100$, apply Ohm's Law, and say the current is I amp, everything would be nice and easy, but unfortunately there would be no such thing as radio.

What we are told to do is first to subtract X_{c} from X_{L} to get the total reactance (because the two reactances are opposite, whatever that may mean), and then work out the circuit impedance, Z, from the formula

$$
Z=\sqrt{R^{2}+X^{2}}
$$

In this case $X=15 \Omega$, so $Z=38.1 \Omega$ if I have done my arithmetic correctly, and the current is 2.625 A . The angle of lag, ϕ-the proportion of a complete 360° cycle by which the current lags behind the generator voltage-can be calculated from

$$
\tan \phi=X / R
$$

or alternatively (if we have worked out Z), $\cos \phi=\mathrm{R} / \mathrm{Z}$ or $\sin \phi=\mathrm{X} / \mathrm{Z}$. They all come to the same. Here X / R is 0.4285 ; so, looking up a table of tangents, $\phi=23.2^{\circ}$.

Even in such a very simple example, the $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ sort of thing is rather a nuisance, because one cannot do it all on a sliderule. The squaring and the squarerooting are all right, but they have to be interrupted in the middle to do the addition. If calculations of this sort have to be done only occasionally, perhaps one can put up with that. But it is very timewasting when there are strings of them, as there may be in working out experimental results or in designing. And this is only the simplest possible case. When it comes to working out complicated circuits, either for particular values as in Fig. I, or generally, by means

Fig. 2. The graphical method of calculating the impedance of the circuit, Fig. I.
of algebra, and expressions of the $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ kind have to be multiplied and divided and otherwise
manipulated, it decidedly becomes what the R.A.F. describes as a bind. And anyway, what lies behind this awkward $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$?
-In the days of our youth I suppose we were all confronted with the celebrated Theorem of Pythagoras, according to which, in a right-angled triangle, the length of the hypotenuse (word the Greeks had for the longest side) is related to the lengths of the other two sides in exactly the same way as the magnitude of the imperlance in Fig. I is related to the reactances. So an alternative method of arriving at Z and ϕ is to draw a right-angled triangle with the lengths of its shorter sides representing R and X to any convenient scale (Fig. 2). Then the length of the third side to the same scale gives Z; while ϕ can be measured with a protractor. I usually measurc R and X along a

Fig. 3. Fully graphical solution to Fig. I.
corner of whatever paper I am using (provided I can depend on its having been cut at right angles).

Although that is probably the quickest and most mistake-proof method for approximate results with this simple circuit, it is not quite so convenient for complicated circuits, and breaks down entirely when general forms have to be worked out.

If, then, we are likely to have more to do with A.C. circuits than occasionally computing the simplest forms, it is worth while adopting a better method.

The process of adding a number of things of the same kind (such as resistances in a D.C. circuit) can helpfully be represented by distances moved along a straight line. The usual convention is to measure the distances from left to right along a horizontal line; negative quantities are then represented by movements from right to left. The plus and minus signs
are the instructions to add or subtract (in the graphical representation, to move to right or left), and the number indicates the quantity or distance. The only stipulation is that they must all be the same sort of quantity--all ohms resistance, or all volts, or all potatoes, etc.

Resistance and reactance, although both measured in ohms so that they can both be represented to the same scale in a diagram, just don't add in this way. It is a fact of nature, which can't be changed. They do combine in a certain way to make impedance ; and, as we know, that certain way happens to be the same way as that by which two journeys at right angles, such as AB and BC in Fig. 2, are equal to one journey. AC , so far as distance and direction from the start are concerned.

We live in and can visualize three dimensions: but suppose there were single-dimension or 1).C. creatures that lived in a straight line and were incapable of going outside or even imagining anything else. To them it would be sheer nonsense to say that 35Ω resistance (which they could understand) added to 15Ω of something else gave 38.1Ω.

If we just said $+35+15$, the carrying out of this operation would be a total movement of 50 units to the right. So it is necessary to have some other symbol of command, or operator, to mean that the 15 units must be in a different direction, i.e., at right angles. A very convenient operative symbol is j. So the instructions for calculating the combined impedance of 35Ω resistance and 15Ω reactance are written very concisely as $35+j 15$. Expressing this generally :--

$$
\mathbf{Z}=\mathrm{R}+j \mathbf{X}
$$

In Fig. I there are two kinds of reactance which are mutually cancelling, so can be expressed as + and - . So the more detailed formula is:-

$$
\mathbf{Z}=\mathrm{R}+j\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{c}\right)
$$

and if the whole thing were done in a diagram it would be as in Fig. 3.

You may have noticed that the \mathbf{Z} was printed in special type. That is the conventional way of showing that it is not just the ordinary algebraical symbol " Z " representing how much there is of

TRDPPIE TONE

Gramophone cabinet Amplifier TP. 614 (RC) Illustrated) incorporates
Amplifier $T .614$, specially NEW Amplifier T. 614 , specially designed for High fidone records
duction of gramophone duction of gramophon response,
variable frequency separate control of bass, treble separate conde frequencies. Inputs
and middla mixing for mic. and gram. with mixively with controls. A player (TP. TWIN
single record Also available, new for with TWELVE speaker
this model. Write for illustrated list of full soung
this
Wupes. Equibment range, in

THE TRIX ELECTRICAL CO. LTD.
iss maple place-tottenmalk count Roap-townow, Wit

" \mathbf{j}^{\prime} " What It Is, and How to Use Ita certain quantity (to wit, impedance). It is what is called a vector operator, involving direction. as well as magnitude. So when you see " $\mathbf{Z}_{1}+\mathbf{Z}_{2}=\mathbf{Z}_{3}$ " it does not mean that if \mathbf{Z}_{1} and \mathbf{Z}_{2} were 100Ω and 150Ω respectively, then Z_{3} would necessarily be 250Ω. They have to be worked out fully in the $\mathrm{R}+j \mathrm{X}$ form.

Now as j is simply an instruction to change direction through one right angle anti-clockwise, two such instructions in succession

must change it through two right angles, which has precisely the same ultimate result as a minus. The obvious shorthand for $j j$ is j^{2}; so the operator j^{2} is equivalent to - , and $j^{2} \mathrm{I}=-\mathrm{I} ; j$ is not an algebraical quantity like x or y, but the result of treating it as if it were is $\sqrt{ } j^{2}=j=\sqrt{ }-\mathrm{I}$ is unimaginable, and therefore quite appropriate as a factor to apply to quantities which lie outside the universe of the one-dimensional D.C. people. What is more, treating j as an algebraical quantity does get the sums right. Although quantities with j in them must always be kept strictly separate from those without, the algebra often results in two j quantities being multiplied together, giving a j^{2}. When that happens, it is quite allowableand very convenient-to substitute - I for j^{2}, and so bring the quantity concerned over on to the ordinary rational side of the iron - curtain.

I shall give an example of this shortly; but in the meantime it would be as well to be quite clear that all j or up-and-down quantities can be combined together by the usual laws of algebra or
arithmetic (so long as the label " j " is not allowed to come off until it is squared), and of course the same for the non- j quantities. So the impedance of any circuit, however complicated, can be expressed in the general form

$$
\mathbf{Z}=\mathrm{R}+j \mathrm{X}
$$

in which " R " and " X " may stand for more or less elaborate expressions.

The simplest possible case, after Fig. 1 , is a circuit in which there are two impedances in series. Call them Z_{1} and Z_{2}, and their component parts $\mathrm{R}_{1}, \mathrm{X}_{1}, \mathrm{R}_{2}$ and X_{2}. (X_{1} and X_{2} may of course themselves be combinations of positive and negative reactances.) Then the impedance of the whole lot, \mathbf{Z}, is

$$
\begin{aligned}
\mathbf{Z}= & \mathbf{Z}_{1}+\mathbf{Z}_{2}=\left(\mathrm{R}_{1}+j \mathrm{X}_{1}\right) \\
& +\left(\mathrm{R}_{2}+j \mathbf{X}_{2}\right)
\end{aligned}
$$

Sorting these out,
$\mathbf{Z}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+j\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)$
which can be renamed
$\mathrm{R}+j \mathrm{X}$
where $R=R_{1}+R_{\mathbf{2}}$ and
$\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}$
This ought to be almost painfully obvious, but in case it isn't, the whole thing should be quite clear if-it is done graphically as in Fig. 4. Here it is all the same whether the whole impedance, \mathbf{Z}, is arrived at by adding the two separate impedances \mathbf{Z}_{1} and \mathbf{Z}_{2}, either as wholes, or in steps $\left(\mathrm{R}_{1}\right.$ to the right, $j \mathrm{X}_{1}$ up, R_{2} to the right, $j \mathrm{X}_{2}$ up) or after classification (R_{1} to the right, R_{2} to the right, $j \mathrm{X}_{\mathbf{k}}$ up, $j \mathrm{X}_{2}$ up).
"So what?" you say. Well, provided that it was obvious to you all along that when adding two-or any number-of impedances in series the resistances and reactances could be separately added to reduce the circuit to only two elements-one omnibus resistance and one omnibus react-ance-then the above does not carry you any further, except perhaps to emphasize the basic principle of combining impedances in the j manner. Once you have got the whole impedance into the form

$$
\mathbf{Z}=\mathrm{R}+j \mathbf{X}
$$

then the magnitude of \mathbf{Z}, which is denoted by Z, can be calculated in the usual way from

$$
Z=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}
$$

and the phase angle from $\tan \phi=\mathrm{X} / \mathrm{R}$
Actually, however, one often doesn't bother to do so. To specify
any impedance completely, two things are necessary. They can be the magnitude and phase angle, Z / ϕ; for example $38.1 \Omega / 23.2^{\circ}$ in Fig. I. But seeing how convenient it is to work with j (if you don't see yet, I hope you soon will), it is often better to adopt the alternative method, $\mathrm{R}+j \mathrm{X}$, and to say that the impedance in Fig. I is $35+j 15$. This is the form in which some types of impedancemeasuring instrument read. There are still other forms, such as the sin-and-cos form; but that is a nother story. The choice is purely a matter of ease and convenience, just as the settling of a debt may take the alternative forms of a bar of gold, a cheque, a shipment of coal, or an entry in a book. Similarly, there are standard methods of converting from one form to another. For impedances, the $\mathrm{R}+j \mathrm{X}$ form is becoming increasingly popular.

As you are no doubt bursting to point out, using j does nothing to simplify the Fig. I calculation if you have to find the impedance in the Z / ϕ form. It only provides an alternative form that cuts out the $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ work. But try a slightly less simple exampleFig. 5. Here there are two impedances in parallel. Now the beauty of the j method is that by substituting Z's for R's the ordinary D.C. circuit principles-Ohm's Law and all that-can be used for

Fig. 5. General case of two impedances in parallel.
A.C. circuits. The rule for resistances in parallel is.

$$
\mathrm{R}=\frac{\mathrm{I}}{\frac{\mathrm{I}}{\mathrm{R}_{1}}+\frac{\mathrm{I}}{\mathrm{R}_{2}}}
$$

which easily reduces to

$$
\mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

In the same way

$$
\mathbf{Z}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
$$

To work this out for completely general \mathbf{Z}_{1} and \mathbf{Z}_{2}-that is to say, each being any possible combina-
tion of R and X -is admittedly quite a lengthy job by this means, and the final formula is complicated. For the sake of clearness, take the special case of it shown in Fig. 6, where the circuit is supposed to be tuned to series resonance by making $X_{1}=-X_{2}=$ (say) X. K_{2} is zero; so call R_{1} just R.
Then $\mathbf{Z}_{1}=\mathrm{R}+j \mathbf{X}$

$$
\mathbf{Z}_{2}=-j \mathbf{X}
$$

So

$$
\begin{aligned}
\mathbf{Z} & =\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
& =\frac{(\mathrm{R}+j \mathbf{X})(-j \mathbf{X})}{\mathrm{R}+j \mathbf{X}-j \mathbf{X}} \\
& =\frac{\mathbf{X}^{2}-j \mathbf{X R}}{\mathrm{R}} \\
& =\frac{\mathrm{X}^{2}}{\mathrm{I}}-j \mathrm{X}
\end{aligned}
$$

This means that although in the loop circuit, in which all three elements are in series, the two reactances cancel out leaving only R, as a parallel or rejector circuit \mathbf{Z} is not a pure resistance. It is, in effect, a pure resistance, in magnitude $\mathrm{X}^{2} / \mathrm{R}$, in series with a capacitive reactance which is the same as X_{2}. Generally in radio circuits R is very small compared with X , so $\mathrm{X}_{2} / \mathrm{R}$ (the so-called dynamic resistance) is very large compared with X , and the $-j \mathrm{X}$ can almost be neglected.

Compare the above very easy working with the old $\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ way. First it would be necessary to transform X_{1} and R_{1} into their parallel equivalents; then combine the resultant reactance with

Fig. 6. Special example of impedances in parallel, in which X_{1} is made equal to $-\mathbf{X}_{2}$. The j method gives a quick solution.
X_{2}; and then transform the resulting X and R into series equivalents.

That is not to say the j method is always the best. Experience shows which method to choose. But even apart from its usefulness for such calculations as the above, it is worth while as a link between algebraical and graphical work, and generally for making things more intelligible. And I have kept to only one part of j-workimpedances. One really ought to start with currents and voltages, and do the thing properly under the heading of "Vectors." But, as I said, my function is not to duplicate what the books say; only (this time) to try to show that j is useful and not unreasonably hard to understand,

Valve Symbols

THE British Standards Institution (28, Victoria Street, London, S.W.I) has recently issued a pamphlet (B.S.1409:1947) giving standardized letter symbols for reference to electrodes and quantities relating to valves. All symbols for elements or quantities inside a valve are small letters, while those referring to externals are capitals; thus, γ_{a} refers to the internal A.C. resistance while R_{a} is used for external resistance. Similarly, $c_{a g}$ is the internal anode-grid capacitance but $C_{a g}$ any external capacitance across the same points. Double subscripts are used, as above, to indicate the points between which the element is effective.

The valve electrodes are indicated by small initial letters of their names, as " a " for anode, with the exception of the cathode which is designated by " k." This is Continental usage and is strange to British eyes; it is doubtless necessitated by the use of " c " for capacitance.

The sections of multiple valves are labelled by letter subscripts, as " a_{d} " for diode anode, while the haIves of double valves are indicated by single and double "ticks" as, $k^{\prime}, g^{\prime}, a^{\prime}, k^{\prime \prime}, g^{\prime \prime}, a^{\prime \prime}$, for a double triode. The various grids of multielectrode valves are indicated by number subscripts in order outwards from the cathode. B.S. 1409 costs 2 s .

"High-quality Amplifier Design"
 A Correction

In Fig. 3 of this article in last month's issue, the anode load of V_{2} should be $47 \mathrm{k} \Omega$, and not $4.7 \mathrm{k} \Omega$ as shown.

The author recommends the addition of a $47-\mathrm{pF}$ capacitor across each of the $0.47-\mathrm{M} \Omega$ resistors feeding the grid of V_{2}, especially if a screened lead is used to feed this grid. The addition recommended makes for better balancing of the circuit at high frequencies, with slight reduction of distortion and slightly less phase-shift.

114

WIN SALES

and

Influence people

Lesson number one in selling is to present your product attractively. We are specialists in this field. We design and build cases that not only fit the job but do a jobof hard selling. And we work fast-7 days from rough sketch to finished product, if necessary.

IMPOSSIBLE? BUT IT'S TRUE

TRY US AND SEE

PRECISION BUILT INSTRUMENT CASES

112-ll6, NEW OXFORD ST., LONDON, W.C.I. Museum ss44.

Unbiased

By FREE GRID

Is Spookology Spurious?

IDARE say that some of you may have heard of the famous rectory at Borkey, in Suffolk. It is hard by the ancient town of Sudbury where Mr. Pickwick laid down the principles which he deemed it expedient to follow whenever he found himself in the midst of an excited election crowd, as he did when he and his followers were in that famous old borough.

It is not with any desire to adopt his advice of shouting with the crowd that I raise the subject of Borley rectory. If recent reports are to be believed, it is still known as the most haunted house in England, as it was when I recollect it in its heyday some thirty or more years ago; and this, mark you, even though it has since been destroyed by fire and razed to the ground. What surprises me is that although it has been visited by Professor Joad and by sundry B.B.C. officials, nobody seems as yet to have had the gumption to adopt modern scientific research methods, such as radar, to elucidate the mystery.

A paranormal entity.
They have been content to rely for their observations on the human senses to detect the presence or otherwise of what I see are now described as paranormal entitiesthese being the same things as you and I in our vulgar unscientific way used to call ghosts.

It has already been pointed out in

Wireless World (page 174, May, 1946) that American observers have shown that these so-called paranormal entities are opaque to radio waves of certain length and, therefore, give an indication of their presence on the radar screen. This new application of science is known as radio-psycheuresis, and the specially designed radar apparatus which it employs is called a radiopsycheurlator.

It looks, therefore, as if the duty of being the first to use this new radio aid to ghost detection will devolve on me. Quite frankly I don't intend to go alone, not because I am afeared of paranormal manifestations but simply because my unsupported testimony might be received with incredulity in scientific circles. In any case, I shall want somebody to attend to the dieseldriven generator for supplying power to the radar apparatus. Any reader who is prepared to share my damp and dismal vigil should, therefore, get in touch with the Editor.

Rationalized Radio

I^{T}T is astonishing how difficult it is to argue with some men. If you are not very careful they will, when a discussion threatens to go against them, adopt the tactics of a woman or a cross-examining counsel and browbeat and confuse you to such an extent that you will find yourself using your own arguments to contradict yourself. You finally end up by not knowing whether you are for or against the thing you are arguing about. I well recollect this happening to me some years ago when giving expert evidence for the Crown in a well-known murder trial which ended in the jury stopping the case and the acquitted prisoner giving me the inside story of the crime as a token of his gratitude.

The reason that I mention this now is that I have recently had a very heated argument with a man who wants to adopt what I call totalitarian methods in broadcast listening although he terms it the rationalization of radio. He points out, quite rightly, that the function of a radio receiver is fundamenially the same as that of a transmitter.

Both are reproducers, their function being to give out a faithful rendering of what is put into them, be it good, bad or indifferent from a musician's point of view. My friend further states that this goal of perfection is not, and cannot be, attained with our present knowledge. Various deliberate distortions, such as contrast contraction, have to be introduced in the transmitter and

Expert evidence.
these ought to be carefully ironed out and counterbalanced in the receiver.

All this seems obvious, but where 1 fail to agree with him is in his methods of carrying out his ideal. He suggests stopping the sale of ordinary radio sets and having special receivers issued by the 13.B.C. These would be designed by their engineers to meet the characteristics of the corporation's transmitters. The sets would be serviced and controlled by the B.B.C. in much the same manner as our telephones are supplied and looked after by the G.P.O.

This is, of course, sheer radio totalitarianism and, as I pointed out to my idealistic friend, if we submitted to it we might just as well abandon the radio link altogether and get the B.B.C. to supply us with carrier-current programmes over the lighting inains. Instantly he agreed with me and, before 1 knew where I was, I found myself being congratulated on being a convert to the carrier-current system. It is, of course, this sort of technique in argument which is so dangerous and so strongly akin to political platform methods where both sides spearc with such a mixture of sincerity, conviction and low cunning that you end up by not knowing what to believe and caring less.

LETTEIRS TD THE EIITOIR

Is H.F. Broadcasting Worth While? + F.M., A.M., and Interference - Impregnation of Windings + Awkward Components

Short-wave Broadcasting

THOMAS RODDAM'S article, "Short Waves for Pleasure," in your October issue, together with the statement of BrigadierGeneral Stoner, Chief Communications Engineer, United Nations, that of the $300,000,000$ people throughout the world who daily listen to some form of broadcasting less than 3 per cent hear any form of direct short-wave broadcast, prompts me to write about the appalling waste of frequency channels, not to mention public money, that is being expended on short-wave broadcasting throughout the world.

Under present chaotic conditions the reception of a shortwave station is a grimly serious business for which the ordinary broadcast listener with his single (16-50 metres) short-wave band receiver is, to put it mildly, hopelessly ill-equipped, and when a station has been tuned in the programme value is nil unless the wanted station happens to be the strongest signal in the band at that geographical point.

Not satisfied with the truly appalling chaos that exists, the broadcasting authorities of nearly every country in the world whose treasury can squeeze the necessary funds from the taxpayers are striving to increase their transmissions in every language and dialect with which mankind is afficted. Most of the peoples speaking these languages, incidentally, are too poor to eat, let alone afford the doubtful luxury of a radio receiver capable of recerving these transmissions.

Could anything be more insane? The magic of the word "propaganda" has so allured all the ruling powers-that-be in the world that this senseless waste of public money, labour, and communication channels must go on. National prestige would suffer otherwise, forsooth! But so long as the B.B.C., for instance, can produce its odd letter or so of en-
thusiastic appreciation from an eccentric Kaffir on the African veldt, I suppose the end will justify the means.
Surely it is time for a general stocktaking of the whole field of short-wave broadcasting, to assess its value to the community in terms of the enormous expenditure of money, time and valuable technical and other labour. In this it is the duty of radio technicians to take the lead in arousing governments to a sense of responsibility in this matter.
The technical press and the radio engineering profession can discharge its duty to the people at large by ceaselessly "plugging " the present mutually unsatisfactory state of affairs. Some day the truth will penetrate the deep recesses of Portland Place, Whitehall, and (who knows?) even beyond the Oder and the Statue of Liberty.
F. W. T. ATKIN.

London, W.g.

"F.M. and Monopoly"

A
LETTER under this heading in your January issue contains the statement: "Only long overdue legislation (already existing in certain European countries) prevents a selfish minority from being obliged to keep offending apparatus in good order and fit suppressors-the cost of which would be quite small."

This frequent complaint about "selfish minorities" and the like incites me to ask if your correspondents can tell us, more precisely, what they mean by these expressions. And do they really believe that the fitting of suppressors to a limited range of appara-tus-amenable to measurement and control-will, alone, suffice to eliminate the more prevalent types of interference

As to the existence of legislatiox in other countries; can anyone name a country in Europe (or elsewhere) where the listener, intent on good reception, has, on

RE-ENTRANT HORN

The new 42REH has advantages of complete weather-proofness, smaller overall length, better weight distribution and consequently greater ease in handling, which make this one of the most popular of the new F.I. loudspeakers. The horn is designed for use with the standard F.I. L.S. 7 Unit and allows for this unit to be driven to 12 watts input. A spun aluminium cover over the unit has room for housing a suitable matching transformer.

The construction has been designed so that the whole unit is assembled and held together with ONE LARGE NUT only. This construction enables a number of units to be packed for export in a space which is a fraction of that normally required; assembly is a matter of a few minutes un. skilled labour.
This unique feature will recommend itself to all export buyers particularly.

The 42REH is not of the " Joud-hailer " type of speaker, but is designed to cover a range of frequencies considerably greater than those needed for purely "announcing*" those needed for purely announcing
purposes : i.e., it is suitable for all normal requirements of high power reproduction of music as well as speech.
Dimensions assembled ... 22in. dia. $\times 24 \mathrm{in}$. Bell diameter 22 in Bell diameter 175 Effective Air Column $\quad . . . \quad . . . \quad 42 \mathrm{in}$... Weight Horn only
Shipping space ... One- $23 i n . \times 23$ in. $\times 18 \mathrm{in}$
8 lbs $12-33 \mathrm{in} . \times 33 \mathrm{in} . \times 27 \mathrm{in}$
 Telephone: WELbeck 2385

Letters to the Editor-
average, better opportunities and service than is available in these islands?

Lastly: whilst the fitting of suppressors and the elimination of interference is most desirable, it may be that the cost, if applied to all potentially offending apparatus would press too hard on our national economy to be sanctioned at the present time. This, I must add, is personal opinion, and it may be wrong, but, at least, it seems a reasonable assumption, having regard to the many other cuts and restrictions in national expenditure.

Rugby. T. H: KINMAN.

T'HE focal point of W. H. Cazaly's letter on F.M. appears to be a rash presumption that " the great majority of the listening public do not like, or want, super-high-fidelity reproduction."

As. we have never had the chance of hearing such reproduction it is astonishing that Mr. Cazaly can glibly state that we don't like it. If he pauses to think for a moment, he will, no doubt, admit that our receivers invariably employ circuits designed, in the interests of selectivity, to remove most of the high, and all the very high audio frequencies. Many and various attempts have been made, usually by the use of electrical and mechanical resonances, to replace, in the amplifier and speaker, what has been carefully eliminated in the tuned. circuits. This does not give fidelity, any more than do gramophone records reproduced through " level" amplifiers.

It is true that there is very little to choose between wide-band A.M. and F.M. so far as the recreation of studio sound is concerned. It is in the matter of interference that F.M. scores so heavily, for, to make A.M. as silent a service, all electrical apparatus, including lighting switches, would have to be fitted with suppressors. This is impracticable. In addition, F.M. can deal effectively with thunderstorms and atmospherics, 'while A.M. and legislation most certainly can not.

During the last few weeks I have been listening to the B.B.C. experimental F.M. transmissions
from Alexandra Palace on an unpretentious but carefully homemade receiver. The quality is astonishing, and the silent background quite uncanny. Before I am accused of living in Alexandra Park let me say that I am using an indoor dipole 25 miles from the transmitter, which, I believe, achieves a mere half-kilowatt in its aerial.

It is really rather frivolous to suggest that one will be forced to listen to the National F.M. service exclusively. There is no un' duly difficult or expensive problem involved in incorporating F.M. in an all-wave receiver, although, to cover foreign listening, an additional short-wave band would probably suffice. Incidentally, it is cheaper to install a F.M. transmitter than to provide an equivalent A.M. coverage.

Obviously, the development of such a service will be delayed by present economic difficulties, but I sincerely hope that this country will proceed, as rapidly as possible, with a system which seems to offer the nearest approach to perfect quality in broadcast reception currently available.

S. C. BARRELL.

Ashstead, Surrey.

Television Standards

IN his references to television in his article "Broadcasting Jubilee,'' in your December issue, P. P. Eckersley has surely overlooked the fact that television is essentially an entertainment for the home.

Criticism of television by nontechnical viewers, is not on account of the definition or the size of screen, but rather on account of the lack of colour. So many items in television broadcasts need colour ; ballet, opera, exhibitions of pictures for example. For home reception a 600 - or 700 -line picture in colour would I think be entirely satisfactory.

The " electronic distribution of films " or cinema television, is an entirely separate subject. Possibly I, 500 lines would be required for this, but the problem is one for the cinema industry.

To lay down standards for home television one must take into account the sort of programmes transmitted and I would say that the B.B.C. has certainly sketched
the general pattern of the television art.

The cinema is not a yardstick for the measurement of the "goodness" of a television picture. Even the Government Committee made this error.

> G. H. L. THOMAS.

Herne Bay, Kent.

Impregnated Windings

IN a letter to the Editor of Plastics (Dec., 1947, issue), C. R. Pye expressed concern at the attitude of British radio manufacturers towards the impregnation of windings. There are some statements and criticisms in this letter which cannot be allowed to pass unchallenged.

Mr. Pye states, correctly, that few of the transformers and chokes exhibited at Radiolympia were impregnated. He infers, incorrectly, that the same is true of the production models. The omission of impregnation for exhibition purposes improves appearance, and enables the standard of workmanship to be seen more clearly. No other reasons need be sought.

Mr. Pye " made enquiries at a technical level," and was told that " manufacturers were not convinced of the benefits of impregnation." In view of Mr. Pye's remarks on p. 625 of the same journal, this is understandable. Nevertheless, he proceeds to accuse the industry of sabotaging the export drive by this attitude, with many details of the perils which beset "dry" windings.

He is apparently unaware of the policy of designing special export models, speaking of " exportable commodities [which] are unsound technically." He states with more courage than wisdom: "if components can be kept free from permeation of moisture they will function satisfactorily." One would wish this were true. Personal experience of tropical conditions has shown that this is a comparatively minor point. Mr. Pye refrains from stating the effect of impregnation on fungoid growth and insects. He does not mention that there is no impermeable impregnant, thus removing all reason for using the process.

The truth is that impregnation is. used by all reputable manufacturers, the main advantage being increased mechanical rigidity. It
is very doubtful if it would ever be used for moisture protection alone. There are many more efficient inethods of achieving this, such as immersion in bitumen. Examples of this were shown at Radiolympia, but were not readily recognizable as transformers and chokes by those unfamiliar with such gear. R.F. coils are generally waxed, for similar reasons. The resulting " tropicalization" is of an adequate standard.

Mr. Pye is a varnish chemist. We may therefore forgive electrical inaccuracies. We cannot forgive unjustified criticism based on such inaccuracies. If Mr. Pye can produce an impregnant that will not react with enamel insulation, while retaining a low permeability, its adoption will follow without any encouragement.
D. W. THOMASSON.

Electronic Applications Research Laboratory, Exeter.

Components for Amateurs

$\mathrm{M}_{\text {columns }}^{\mathrm{AY}} \mathrm{I}$ ventilate in your teurs hold against manufacturers of certain larger componentsnotably paper smoothing capacitors, chokes, transformers, etc.who, with few exceptions, insist on building these units upsidedown. The designs, with their fixing flanges at the bottom and terminals perched at the top, are obviously relics of the old "breadboard hookup" days.

Even the not-so-modern amateur uses a metal chassis as the basis of his set and likes to keep his wiring ship-shape underneath. Valve manufacturers realized this many years ago but the fact seems to have escaped designers of other components with a result that wiring keeps popping in and out of the chassis and trailing up and down components like a creeper on a trellis.

Perversely, these unshrouded terminals held magnificently aloft are invariably high potential spots which make running adjustments to pre-sets quite unnecessarily precarious.

With components made the right way up;i.e., with terminals protruding into the chassis at the flanged or fixing end, there is no reason why anything on the upper deck should be dangerously live and the improvement in appear-
ance and efficiency is, surely, obvious.
S. JOHNSON.

Twyford, Berks.

Television and Thunderstorms

IN connection with Mr. Hill's experiences (your Sept. issue) some observations which I made at radar stations in Denmark may be relevant. The frequency mainly used there was $600 \mathrm{Mc} / \mathrm{s}$, and the greatest distance from which echos normally could be received was about 30 miles. Under certain weather conditions this range increased for a short time to I50 miles and more.

The reason for this increase was obviously layers of different temperature in the atmosphere ("inversions of temperature"), which refracted the waves back to the ground, so that they followed the curvature of the earth over a long distance. Similar conditions in the atmosphere may also account for the extremely good reception of television outside the local zone just before a thunderstorm. OTFRID REIGER.

Vienna.

MANUFACTURERS' LITERATURE

ILLUSTRATED leaflet describing 1 complete equipment for visual alignment of R.F. and I.F. circuits from Erskine Laboratories, Scalby, Scarborough, Yorks.
" Mullard Valves for Industry and Communications," Part I, including valves up to 25 watts dissipation supplied for electronic and telecommunication equipment, from Technical Publications Dept., Mullard Wireless Service Co., Century House, Shaftesbury Avenue, W.C.2. Circulation restricted to professional equipment designers.

Catalogue of photoelectric cells from Radio-Electronics, St. George's Works, Merton Road, Norwood Junction, London, S.E. 2.5
Illustrated leaflet describing Export Model 127 car radio receiver for short, medium, and long waves from Romac Radio Corporation, The Hyde, Hendon, London, N.W.9.

Technical details of transformer turns-ratio bridge (Type 307B) and oscillator detector units (Types 403A and 404 A) from Dawe Instruments, Harlequin Avenue, Great West Road, Brentford, Middlesex.
"Cossor Gee Mark III," Part I, General Description, from Cossor Radar, Wren Mill, Chadderton, Lancs. Available to air operating companies, service organizations, etc.

The following figures are the pass figures on final test for Model QA12/P

AMPLIFIER

Co Acrustical

> ACOUSTICAL MANUFACTURING CO., LTD., HUNTINGDON
> TEL: 361

RANDOM RADIATIONS By "DIALLIST"

Interference

Ofaults comes across some queer faults! Here's one that gave me a spot of bother. For some time it had been noticed that wireless receivers working in the house had occasional fits. of noisiness. Neighbours were mentally anathematized for using radiating apparatus; I felt quite sure that nothing in miy house could be to blame. One evening a fuse blew. Obviously it " didn't orter," for it was a 5 -amp fuse and the circuits served by it never carried more than I amp; still, fuses do "go" sometimes owing to old age and corrosion and as there was no further trouble when it was replaced nothing more was thought of it. A few evenings later the noisiness of the receivers increased and remained incessant. 1 decided to investigate next morning, just to make certain that nothing was amiss with lighting or power circuits, all of which, by the way, are of lead-covered cable, with a sheath-to-earth resistance well under the regulation ohm. Fate was kind to me in three different ways when I switched off at the mains. First of all, the old-fashioned distribution box, put in before my time, has separate switches in the phase and neutral legs of the main lighting leads; secondly, 1 chanced to switch off the neutral first; thirdly the lamp near the box happened to be alight. You can imagine that when it stayed alight with the neutral lead broken I did a bit of quick thinking. Clearly, a dead short from neutral to tarth. But where? There are thirty-eight outlets in the house and, as you'll gather, no small length of wiring.

Sleuthing

It was a fault that might have taken ages to locate but for the fortunate fact that soon after I came into the house I'd reorganized the out-of-date fusing system, arranging matters so that groups of three, four or at the most five lighting outlets were served by separate sub-circuits, each with 5 -amp fuses in both legs. By removing these fuses, one pair at a time, with only the phase lead switched on at the mains one should be able either to track it down to an individual sub-circuit, or to exonerate the lighting crcuits altogether. Recalling the blown fuse of some days before, the first bridge 1 removed was that which had held it. The lights on both sides of it went
out. To verify, I replaced it and tried the other fuses pair by pair. Lights on the mains side of all of them remained glowing. The power circuits also gave negative results. The faulty sub-circuit served five outlets. A careful inspection of the visible parts of them disclosed nothing wrong, so with a sigh of resignation I rolled back the carpet, found the required floorboard by the tell-tale marks of the "electricians' chisel" and got it up. With its six pairs of leads, the junction box was quite a little Clapham. Better have a look inside. I pulled off the cover before switching off and as I did so the lights went out.

Cause and Effect

Have you guessed yet what was causing the trouble? Let me tell you before you have your final shot that all the "Scruits" were in place, with their skirts well over the insulation in every case. Switching off, I verified every connection and there were certainly no uncovered bits of the bared ends. I knelt, thinking it over and twiddling the metal cover in my hands. Suddenly I let fly a naughty word and transferred a cut and bleeding finger to my mouth. What had bitten me was the jagged edge of a small hole which someone had for some unknown reason made in the cover-I remembered then that the box was an old one which I had transferred from another place when wiring up those circuits. Careful examination showed a cut that the jag had made into the insulation of a neutral lead. Now, why was it over five years before the insulation was cut right through? That time had passed between the installation of the box and the first signs of the fault. Why, again, was the fault intermittent? It obviously was, for radio sets were only occasionally noisy until the final evening. And not long before that a Megger test had given highly satisfactory readings. 1 believe the reason is this. The junction box was fixed to a joist, which probably moved slightly not only when people walked over the floor, but also as the wood expanded and contracted under the influence of weather conditions. The little jagged piece eventually sawed its way through the rubber and cotton. When it had done that, movernents of the joist sometimes made and sometimes broke the short that had caused the trouble. A neutral-to-
earth short is a fault that may easily occur in a house and remain unsuspected, particularly if the wiring is old It might not be dangerous, unless a phase-to-neutral fault occurred at the generating station. But it is certainly a most undesirable state of affairs and it may be the cause of mysterious fuse-blowings and of noisy radio reception, if of nothing worse. Hence, should such symptoms occur and other expedients fail, tests on the lines described may be profitable.

The Steel Bars

MANY thanks to the numerous readers who sent in answers to my very easy magnet problem (December issue) : how can you produce a pair of steel bars of exactly the same size and appearance, one of which is magnetized and the other not, such that the magnet cannot be detected at once by placing them in Γ-formation. The solution is, of course, to magnetize one so that there are similar poles at either end and an area of opposite polarity in the middle. There is then marked attraction between the two, no matter which is the cross-piece and which the stalk of the T. Special thanks to one reader who points out an unpardonable piece of loose wording on my part. I wrote that if the bar magnetized so as to have its opposite poles at either end were used as the cross-piece and the nonmagnet as the stalk, there would be no attraction between the two. 1 should, of course, have written " minimum attraction," for it is only at a point that the force is zero, the end of the other bar covers an area.

Teleciné Pictures

$\mathrm{R}^{\text {EFERRING }}$ to my suggestion last month that "Teleciné Review' might include films transported by air from distant places a third correspondent writes: "Why not transmit the images to this country, frame by frame, by ordinary still-picture radio methods, reassemble them into a film and televise that? The time-lag would then be greatly reduced." There may be something in the idea if a means of speeding up still picture transmissions is evolved; but I hardly think it could be worked with present systems. So far as I remember from my last visit to Cable \& Wireless, the time needed for transmitting a 5 in $\times 4$ in picture is eight minutes. Suppose that prints of 12 consecutive ciné pictures are pasted up into a rectangle of about that size, we could send and receive them in eight minutes. The definition
would, of course, be rather poor, since each individual frame would be made up of only 1 ! I2th of the total number of pirture points. Still, people might not be overcritical about pictures of distant events, televised a few hours after their occurrence. To make things easy let us suppose that 25 individual pictures could be transmitted and received in it minutes. Then the time required for transmitting the 25×15 images needed for a 15^{-} second news flash would be 15×16 minutes $=4$ hours, assuming that there were no delays or interruptions of any kind. As many of the radio picture services are already working at their maximum capacity it might be a matter of some difficulty $t o$ secure a 4 -hours' run just when you wanted it. It would also be pretty costly.

Television Forges Ahead

F
OR some time now television receivers have been selling in the London area (and even in places surprisingly far outsicle it) just about as last as manufacturers can turn them out in the factories. The number of television licences has increased by 50 per cent since the end of May and all the signs are that the rate of increase now is governed unly by the rate of supply of televisors, the latter being in its turn governed to a great extent by the rate of supply of the right kind of cathode-ray tubes. The man in the street aplears to have become reconciled to the $7 \frac{1}{2}$ in by 6 in picture, - realising that, small though it may seem, it is amply large for the average living-room of to-day. Certainly, the best-sellers amongst television receivers are those using g-inch tubes. Those who have bought them seem to be perfectly satistied with the results and I don't often hear people regretting that the picture isn't a bit bigger. With a set that is interlacing as it should and which handles frequencies up to $2.5 \mathrm{Mc} / \mathrm{s}$ adequately, the definition is so good that one soon ceases to think about picture size.

Remarkable Achievement

An outstanding achievement in television was the O.B. of the pantomime from the Regal Theatre at Edmonton. It was announced before the programme started that nothing but the ordinary stage lighting would be used. One expected, perhaps, rather muzzy images and was prepared to make allowances. Actually, the broadcast was first-rate-a great credit to the engineers responsible, for even with the newest type of C.P.S. camera there must have been some pretty problems.

- DVER 200 TYTPES IDESIGNED

PProduced by the largest manufacturers of electrical switches, the famous BULGIN range affords you the choice of over 200 different types of high-quality switches, covering all requirements and suitable for a wide range of voltage and current ratings. BULGIN switches, supplied in nickel, Florentine-bronze and gun-metal finishes, are made from the finest materials only, and can be relied upon to give long and trouble-free service. BULGIN switches give the distinctive touch!

A. F.BULGII E CO. LTL. •BYE-PASS RI. BARKIMG

Telephone: RIPpleway 3474 (5 lines)

RECENT INVENTIONS

A Selection of the More Interesting Radio Developments

TRANSMISSION LINE AMPLIFIER

THE control grid of a triode valve V with plane electrodes, designed for use as a coaxial line amplifier of centimetre waves, is formed with and carried by an external copper disc D, which is sealed through the glass of the bulb, and is earthed, so far as radio-frequency currents are concerned, by capacity coupling to the walls of the cathode and anode resonators A, B. Input energy is applied to the cathode resonator A from a coaxial feeder L, which can be moved axially to adjust the coupling. The cathode is heated through the centre core of that resonator. The amplified output is drawn off from the resonator B by a coaxial line L_{1}, which makes a push-fit, so that the usual coupling loop can be rotated.

The earthing of the grid prevents any positive feedback between the anode and grid. In addition, since the anode current also flows through the input impedance, this provides sufficient

Coaxial line amplifier.
negative feedback to ensure complete stability.

Standard Telephones \& Cables, Ltd., and S. G. Tomlin. Application date May 1oth, 1941. No. 585447.

TELEVISION RECEIVERS

T^{H}HE present television service may eventually be replaced by one using up to 600 or 800 scanning lines per frame. The higher definition will naturally increase the cost of the receiver, putting an undue strain on those who have little fault to find with the standard of reproduction now available.

The inventors have devised a relatively inexpensive type of set which is capable of receiving, say, an 8oo-line transmission and of reproducing a $400-$ line picture from it.

The received synchronizing impulses are applied, through an integrating circuit, to a gas-filled relay which responds only to every second impulse. The saw-toothed time-base voltage initiated by the first pulse overlaps the

A
succeeding pulse, which is therefore ineffective. This avoids the circuit complications required to follow an ultrafast " flyback," and so saves cost.
The Geneval Electric Co., Ltd., and D. C. Espley. Application date October 6 th, 1943 . No. 587772.

NAVIGATIONAL SYSTEMS

T^{0}, increase the sharpness of the " off-course" indication given by an approach beacon of the overlapping beam type, the carrier wave is radiated separately from the signal sideband energy. By suitably adjusting the phasing of the currents fed to the aerials, the maximum of the sideband radiation pattern is made to coincide substantially with the minimum of the carrier pattern, though the carrier amplitude is always kept higher than the maximum sideband amplitude. Both patterns are then simultaneously alternated about the desired line of approach.

The aircraft receiver is provided with automatic volume control, so that its gain is always regulated by the prevailing level of carrier wave energy, being greatest when the sideband level is lowest, and vice versa. This provides a clearcut indicator response of the order of one decibel per degree of deviation.
Standard Telephones \& Cables, Ltd. (assignees of W. D. McGuignan). Convention date (U.S.A.) November I5th, 1943. No. 586814.

PHASE INVERTERS

 PUSH-PULL amplifier A is driven from an unbalanced signal source S through the phasing network shown. The bridge is normally' balanced with no signal input, the respective anode resistances $R_{1},{ }_{R} R_{2}$ and cathode resistances $\mathbf{R}_{3}, \mathbf{R}_{4}$ of the two valves $\mathrm{V}_{1}, \mathrm{~V}_{2}$ all being equal. High tension is applied across one diagonal of the bridge, the H.T. source being centretapped at Z to the zero point of the push-pull amplifier, which is connected across the opposite diagonal.With this arrangement, an input signal applied to the grid of the valve V_{2}, across a

Bridge-type phase
'The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery office, from specifications obtatnable at the Patent office, 25, Southampton Buildings, London, w.C.2, price 1/- each.

> splitter.
resistance R, unbalances the bridge, and develops output voltages at T and T_{1} that are oppositely phased with respect to the point 2 . Fluctuations in the supply voltages are automatically balanced out in the bridge, and any difference in the operating characteristics of the valves V_{1}, V_{2} can be offset by adjusting the output
terminals $\mathrm{T}, \mathrm{T}_{1}$ along the resistance arms.

Marconi's Wireless Telegraph Co., Ltd. (assignees of H. W. Berry). Convention date (U.S.A.) July 27th, 1943. No. 5^{84191}.

SHORT-WAVE VALVES

T
HE valve shown is designed to be directly coupled to a coaxial transmission line carrying centimetre waves. The bulb is divided by a metallic disc

> Grounded-grid triode.

D, which is sealed in through the glass and is connected to the control grid, which is located in an aperture at its centre. The cathode is mounted just below the grid, the leads being sealed through the lower pinch. The anode A is thimble-shaped, to take the centre core of a coaxial line, and is sealed to the upper part of the bulb. The inter-electrode spacing is very close.

In operation, the valve is used as an " inverted " or grounded-grid amplifier, the grid disc D being earthed either directly or by close capacity coupling, to the walls of the transmission line. The disc then screens the
input from the output circuit, and otherwise serves to stabilize the valve and give it a high amplification factor.

Standard Telephones \& Cables. Ltd., and J. Foster. Application date, June 13th, I94I. No. 585448.

IT CAN SEEM LIKE CHILD'S PLAY

receiver is to begin at the beginning with a sound circuit design-a design that's been tested and re-tested-a design that will stand up to the most critical examination. From this design a prototype is constructed in which every component receives the same rigorous testing. We leave the experts to pass judgment on the resulting Sobell receivers. We are confident that for ease of control and absolute fidelity of reproduction these models will be found to have no equals-that, in fact, you will pronounce them

Roll top gives easy access to gramophone turntable. The receiver is a 5 -valve super-het. operating from 200/250 volts, $40 / 100$ cycles per second A.C. supply. Wave range : $16-50$ metres; 193-577 metres; 800-2, 140 metres.
SOBELL MODEL 516 T.G. TABLE radiogram

$$
\text { mone } 1953 / 1 \text { metres; } 000-2,140 \text { metres. }
$$

 loudspeaker. Covers long, medium and two short wave ranges. Voltages as for 516 T.G.

TWO YEARS' FREE ALL-IN SERVICE IN THE HOME
Adve. of Sobell Industries Ltd., Langley Park, near Slough, Bucks.

SENSITIVITY 10,000 OHMS PER VOLT

Designed to meet the demands of Service and Plant Engineers, also Radio Amateurs, 21 Ranges:-Volts: A.C./D.C. 10, 25, 100, 250, 500 and 1,000 .

Microamps: A.C./D.C. $0-100$.

- Milliamps: D.C. 2.5, 10, 25, 100 and 500.

Ohms : 0/10,000 and 0/i Megohm.
All voltage measurements A.C. and D.C. are at 10,000 ohms per volt, to comply with the requirements of modern radio and electronic equipment, where tests have often to be made across high impedance circuits.

Price: Elo. IOs.
Immediate delivery from wholesale stockists.
"Monobolt" speakers, the first of the new Truvox radio range, are now available from all radio dealers. Quality enthusiasts, and all those who want " the best," will welcome this news. If you require fuller details than are given below-a postcard will bring them.

TWO OUTSTANDING MODELS

15 Watt Quality Amplifier Special Amplifier designed primarily for the high qualicy repro duction of Gramophone records. Incorporating a built-in variable seratch filter, bass and treble lift controls and negative feed back. A maximum output of 15 Watts is obtained, but low average listening levels may be run without deterioration in quality. The valve line up is :-2 ECC 32 Twin Triodes, 2 EF 50 Pentodes, 2 EL 37 Pentodes I 5U4G Rectifier.
Price $£ 29.15 .0$

FROM THE
<WODEV
RANGE OF QUALITY AMPLIFIERS

The Rad. 20 model illustrated is ideal for Schools, Clubs, Hotels, etc., where high quality reception of the normal broadeasting programmes is required. A Three wave band superhet radio unit of the very latest design is incorporated, and provision is also made for microphone and gramophone inputs. Available for 200 250 V A.C. mains.

Retail Price $£ 44.15 .0$

WODEN TRANSFORMER CO. LTD.,

 MOXLEY ROAD, BILSTON, STAFFS. Phone : Biston 41959
-M. R. SUPPLIES Ltd.

have the following first-class, brand uew Radio and Laboratory Material available for immetiate delivery from stock. All prices nett.
MICRO-AMPERE METERS ((ew, ex-A.M.) $0 / 100$ micro-amps, 1 st grade m/ooil, zinin acale. 3in. flush mount. lint. res. 175 oliths (average), by prominent maker. 37/6.
INSTRUMENT RECTIFIERS (full-wave) 1 ma. only, 5 /-
VARIAC TRANSFORMERS. Essential for correcting mains fluctuations, maintaining constant voltage (manually operated by knob) Model "A A." Imput $200 / 240$ v. 50 c . outpat 220 v. 50 c . Loading $1.65 \mathrm{kra.}, \mathrm{f}^{7} / 10 /-$. Model " B. "input 200/250 v. 60 c . output 230 v .50 c, , loading $1.01 \mathrm{kva}, \mathrm{f6} / \mathbf{1 0 -}$. Voltages are infinitely variable within Ilmite rated. (Despatch p. train, either 3/6.)
PRECISION VOLTMETERS (suitable for use with variacs) 3fin. flush panel mount. 0/250 V. A.C., rectited moving coil, 86.
E.H.T. AOLTMETERS, m/coil, by Lest makers, $0 / 3500$ volta D.C., 31 in . dia. ProG.E.C. EXTRACTOR FANS, operation $6 / 12$, $1 / \mathrm{C}$ or 50 y. A O. 7 in impeller, very well made in die-ceast chassis 9 fib. sq. by 6 inn, overall. These can be used either as extractor or cooling ian, 35
L.T. RECTIFIERS. full-wave, bridged, selenium, S.T.C., all for charging up to 12 v . At 1.5 ainp., 12/6. At 4 -amps., 25/न. At 68 ampe., 39/6. At $10 / 12$ amps., $48 / 6$. Also for D.C. delivery up to 30 v . 4 amps., 456.
STEP-DOWN MAINS TRANSFORMERS to Bnit above rectifers, All primaries tapped 200/220/240 v. 50 c . and sees. Lapped for 6 and 12 v. chirge. For 1.5 a. Rect., 23/6. For 4 -amp., $38 / 6$. For $6 / 8$ amp., $55 /-$. For $10 / 12$ amp.. 77/6 (des. $2 / 6$). For the 30 v. 4 amp. rect., $57 / 6$ (des. 2/-
SHORT-WAVE RECEIVERS. Last few of the excellent B2 Mk. MI Receivers and Power Packs. Operation any A. Mains and 6 F. D.C. Range 3.1 to $16 . b \mathrm{mc} / \mathrm{s}$, Superhet with B.F.0. Compact and highly efficient set with aiferis, phones, etc. B.2. Transmittier at $10 / 6$ the set of four. B.2. Transmitier at MABTER CONTACTORS, suftsble for process timers, or darkroom work. Spring driven, impulse every hali-second with closed circuit. Precision made, in teak transit box, 25/-
TBERMOSTATICSWITCHES. Capacity 1.5 amp . On at 32 deg . F. and off at 59 deg F., therefore right for frost protection. Adjustable, 4, 6 .

GERMANIUM CRYSTAL RECTIFIERS (G.E.C.). Only 13 mm . loug. Frequency range 50 c . to 45 mC . Many applicationk-dincriminator and limiting circuite, second detectors, meter rectiffers, A.F. und R.F., in place of diodes, valve voltrueter, etc., $27 / 6$.
LARGE ALARM BELLSS. Operation $50,100.240$ v. A.C. Fitted tw in gongs each 6 in . dia. Overali height 12 in ., width 12 in. P.O. type, completely weatherproof, 29/6. CENTRIFUGAL BLOWERS (G.E.C.). Operation 6/12 V. D.C. or 15 V. A.C. Intake 2 lin . Ontlet 13 im . Height overall 8 lin. Suction and blist greater than average vacuumceair, is
H.T. RECTIFIERS. (S. T.C. selenium). D.C. delivery up to $\$ 300 \mathrm{v}, 120 \mathrm{~m} . \mathrm{a}$. in half Wave or voltaze doubler (t wo can he bridged for $300 \mathrm{~m} . a$.) Very gpecial ofter 6 . HEAVY Drom 120 to $75 /$ with CT, for puah-pull. Handing up to 25 -watth at highfldelity. Weight 7t lbs. $59 / 6$ (des, $2 / \cdot$)
HOT-PLIER STRIPPERS (B.T.C.) Operation $200 / 260$ v. A.C. For rapid and clean stripping of P.V.C. and rubber insulation. With trinsformer, ready for use, 63 Please include suffictent for packing and despatch.
M. R . SUPPLIES Ltd., 68, New Oxford Street, London, W.C. 1

"You're CERTAIN to get it at ARTHURS

\star VALVES : We have probably the largest stock of valves in the Country.

Let us know your requirements.
AVOMETERS. NOW IN STOCK.
AVOMETER, Model 7 19100 AVOMETER, Model 40 $\leqslant 17100$ VALVE TESTER (Complete) 16100 TEST BRIDGE
....Ell 0 AVOMINOR, Universal Model AVOMINOR, D.C. Model $\subset 440$ SIGNAL GENERATORS, A.C........fI3 0

TAYLORS' METERS. COMPLETE RANGE
All orders sent by return of Post.

STAGE EQUIPMENT

NOW IN STOCK

Term C.O.D
London's Oldest Leading Radio Dealers.

EST
1919

Jur Only Address:
Gray House, 150, Charing Cross Rd.,
London, W.C. 2
TEMple Bar 5833/4
ELECTRICAL, TELEVISION \& RADIO ENGINEERS.

The tube end is made by a special moulding technique, which produces a screen face nearly flat, and more constant in production than is normally possible with bulbs made by the usual blowing technique. A picture size of approximately $200 \times 160 \mathrm{mms}$. is obtainable with slight masking of the edges and corners. The bulb is made of high insulating glass giving a minimum of screen charging effects.
The electrode gun is designed to give a high picture brightness, with excellent definition for a relatively small voltage drive to the modulator.
Detailed technical data sheet available on request.

CATHODE RAY TUEES

VALVES

[^1]

H.P. Radio Services Ltd. offer-

Ex.Army Reception Sets, Type R107. 9 Valve receiver designed for CW and RT signals. Weight 96 lbs. Length 24 ins. Height 13 ins. Depth $17 \frac{1}{4}$ ins. Frequency range $17.5-7$ mcs., $7.25-2.9 \mathrm{mcs} ., 3.0-1.2$ mes. Highly Sensitive and Selective. A.C. mains $100-250$ volts or 12 volt accum. Mains Consumption 31 wates Circuit RF Amplifier. Oscillator. Frequency Changer. Two IF stages (465 kcs) Second detector. AVC. AF amplifier. Output Stage and Heterodyne Oscillator (beat). Three types of valves used-EF39, EBC $33,6 \times 5$. 12 valt non sync. vibrator pack fitted. Monitor loudspeaker built in. Amazing value $£ 16$ i6 0 carr. paid. All in first-class order and condition.
Terms: Cash only. (No C.O.D. or Hire Purchase)
We are still offering Ex-Govt. Combined Moving Coil Headphones and Moving Coil Hand Microphone. Guaranteed perfect $9 ; 6$, post. 8 d . We guarantee

satisfaction and safe delivery.

H. P. Radio Services Ltd.

Britain's Leading Radio Mail Order House
55 County Rd., Walton, Liverpool, 4.
Tel.: Aintree 1445

METALLISED CERAMICS

 Two additions to the S.P.range of FREQUENTITE bushesR. $50650 \quad$ R. $50764 \quad \star$ R. $50844 \quad \star$ R. 50855

For full information and prices please write to:

STEATITE \& PORCELAIN PRODUCTS LTD.

STOURPORT-ON-SEVERN, WORCS. Telephone: Stourport III. Telegrams: Steatain, Stourport.

Fault finding Simplified The New Taylos CIRCUIT ANAIYSER Model2an

The 20A traces the signal through the receiver stage by stage from aerial to loudspeaker. A midget pentode detector is coutained in the probe, used for R.F., vseilhator and I.F. checks, followed by an amplifier and loudspeaker in the instrument with a" magic eye" to give vismal indication of signal strength. The latter is used for D.C. checking on A.V.C. Incs or oscillator self-bias. For A.F. Checking the input is taken directly to the amplifier which can be switched to feed either the loudspeaker or the magir eye. The selector switch enables the internal speaker to be used separaiely for test purposes either as low or high impedance. A.C. mains operated, 110 volts and $200 / 250$ volts, $40 / 100 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

PRICE $\mathbf{~} 15$-15-0
HIRE PURCHASE TERMS
£1.10.5 DEPOSIT \& 11 MONTHLY PAYMENTS OF £1.10.2
\section*{EARLY DELIVERY}

TAYLOR PRODUCTS INCLUDE: MULTIRANGE A.C. D.C. TEST METERS SIGNAL GENERATORS VALVE TESTERS A.C. BRIDGES CIRCUIT ANALYSERS CATHODE RAY OSCILLOGRAPHS HIGH AND LOW RANGE OHMMETERS OUTPUT METERS - INSULATION TESTERS MOVING COIL INSTRUMENTS

TAYLOR ELECTRICAL INSTRUMENTS LTD
419.424 MONTROSE AVENUE, SLOUGH. BUCKS, ENGLANO

Telephone SLOUGH 21381 (4 lines)
Groms \& Cables "TAYLINS" SLOUGH

SPHERE INSTRUMENTS

Introducing the
 GENERATOR
A portable Signal Generatorfor AC, Mains operation. Specially developed by SPHERE as a high class instrument, for general Laboratory and Workshop use, it is the ideal instrument for the aligning and testing of radio receivers and amplifiers.

This is a pecizlly designed Generator embodying several new and unique features and improvements, which radio engineers will find invaluable.

All "SPHERE" Test-Instruments are entirely British made with highest quality materials and workmenship and carry a SiX Months' guarantee.
Continuous Frequency coverage from 110 Kilocycles to 56 Megacycles, in six bands.

- Exclusive "SPHERE"" " SEE AT A GLANCE" Band and Attenuator indicators.

Built in ladder attenuator with fine control, giving IVolt maximum, in five steps, in multipler of to Microvolts.
Radio and Audio Frequency Voltages can be switched via single Test-lead.

> Variable control of 400 C.P.S. audio, from 0 to 1 Volt.

FOR RADIO SERVICE, RADIO ENGINEERING AND LABORATORY USE.
Write for List No. 505 S.G.

SPHERE RADIO LIMITED

Radio Instrument Manufacturers
HEATH LANE, WEST BROMWICH


```
AN (AN PRODUGT
``` invaluable for the mounting and suspension of machines, equipment, instruments, electrical apparatus, motors, etc., and wherever elimination of vibration and shock is required.

\section*{SPECIAL FEATURES}

Flexible in all directions at an equal deflection. Can be loaded on any side, thus eliminating vibration in Vertical, Horizontal and Longitudinal planes employing best quality natural rubber spring elements and complete with snubbing device. Special Fittings made to suit customers' require. ments.
Also available as previously advertised, the ALL-METAL construction comprising an ingenious Damped Spring System Write for illustrated brochure, and send us details of your requirements.
A. WELLS \& CO. LTD. (Dept. W.W.),

STIRLING ROAD, WALTHAMSTOW, LONDON, E.I7

\section*{We'd like you to know NEGATIVE and POSITIVE FEEDBACK on the FERRANTI 347}
' Quality ' enthusiasts have long regarded the pentode or tetrode output valve with suspicion. Yet the pentode has two advantages which have made it universal in broadcast receivers - it gives high output with economy in H.T. consumption and it requires quite a small input signal. It also has the useful quality of giving a relatively greater amplification of high notes than a triode, which helps to make up the loss due to the selectivity of the I.F. circuits.

The disadvantages of the pentode or tetrode are that the high power levels, which are apt to occur in the lower audio frequencies of a programme, can cause unpleasant distortion; and that it does not damp the 'boom' which arises from the bass resonance of the loudspeaker.

The pentode can be made to behave like a triode by negative feedback; but amplification is lost, which reduces the sensitivity of the receiver and makes the use of a pick-up difficult. The useful ' boost ' of high frequencies is also lost. We have, therefore, introduced a system in which negative feedback is used to give the advantages of a triode in handling the low notes and cutting out boom. The loss of gain is made good by the use of positive feedback. The circuit is

so arranged as not to operate on the high notes, which do not require feedback, and so the increased high note amplification of the pentode is unimpaired.

This system combines the advantages of pentode economy and triode quality. It is used in the Ferranti 347 Console Receiver with a generously designed output transformer and a \(10^{\prime \prime}\) high flux density P.M. loudspeaker.

Model 347 Console Receiver. 5-valve. 3 - waveband A.C. superhet. Pre-set tuming on 2 switchselected stations. \(10^{\prime \prime}\) energised permanent magnet speaker. Variable tone control. Figured walnut cabinet. Retail price £46.4.8. (Inc. £11.4.8 tax.)

\section*{OF NUMEROUS TYPES}

Government Surplus machine tools available NOW at attractive prices.
YOUR opportunity to get better equipment and increase production.

DISPOSAL CENTRES, where records of all machines available may be inspected, are open to the public for enquiries from 10 a.m. to 4 p.m. Monday to Friday inclusive :-

BIRMINGHAM C.M.L. Buildings, Great Charles Street BRISTOL 8/9 Elmdale Road, Bristol 8.
CARDIFF Imperial Buildings, Mount Stuart Square. GLASGOW 21 Glassford Strect.

LEEDS 10 Bank Street, off Boar Lane.
LONDON Room 0088, Ground Floor, Thames House North, Millbank, S.W.1.
MANCHESTER Britannia House, Fountain Street.

\section*{The ARDENTE \\ \\ LOUDSPEAKER}

Exceptional frequency response and power landling capacity; 12" heavy duty, permanent magnct, movingcoil unit gives finest possible reproduction of speech and music. Specially designed walnut cabinet brings out sounds from the back of the loud-speaker cone in phase with the frontal waves.
Ideal for theatres, dance halls, ice rinks, ete.

\section*{Details/demonstrations from :}

\section*{ARDENTE ACOUSTIC}

LABCRATORIES LTD. COMPTON, GUILDFORD, SURREY Guildford 3278
London Branch: 309, OXFORD ST., W.1. Mayfair 7917.

Makers of all types of speakers for indoor, outdwor and mobile use

(Patent Applied For)
Every Radio, Electrical, Motor and Model Engineer hates those fiddling small screws in awkward corners! Here's the perfect solution-fits any screwdriver \({ }_{3^{2}}^{5} \mathrm{in}\). dia. approx., holds the screw snug and straight, slips up the shank when not

THE ACRU ELECTRIC TOOL MFG. CO. LTD
123, HYDE ROAD, MANCHESTER. 12.
Tel.: ARDwick 4284

\section*{Special Offer} 10-VALVE COMMUNICATION RECEIVER-Type R1155

These sets are equal to new, need only a power pack for simmediate use (see "'W.W.". Julç, 1946). Freg. range magic eye. Enclosed in strong metal box. Each receiver magio eye. En aerial tested.
Complete with Power Pack and Loudspeaker, for A.C. mains \(200-250\) y.
(Carr. and plg. 10/8 extra)
£20
Super Quality Heavy Duty TWIN. ELEMENT SLIDING RESISTANCES 5.4 ohmat 20 amp

47/6
12 ohm at 10 amp .
70 ohm at 5 amp.
\(39 / 6\)
70 ohm at 5 amp.
Single Element 14 ohm at 5 amp. \(35 / 6\)
\(13 / 6\)
TELEPHONE LINE or UNISELECTOR SWITCHES

4. or 6-bank, 26 oonstants. Have various applications including automatio tuning, circuit selection, etc. Operates on \(25 \cdot 50 \mathrm{v}\).

28/6

\section*{ELECTRO MAGNETIC COUNTERS}

Ex-G.I'O., every one periect, electro-magnetic, \(B 00\) ohm \(\begin{aligned} & \text { coll, counting to } 9,999 \text {, operated from } 25 v .50 \text { v. } \\ & \text { D.C., many industriad and domestic applications }\end{aligned} \quad 5 / 6\)
Ex-GOVT. TELEPHONE HANDSETS

\section*{2-VALVE BATTERY AMPLIFIERS} Type A1134

Q.P.P. output. Coosplete with 2 volt valves. In strong Wood tranalt case \(104 \times 8 \times 7 \mathrm{in}\). New bargain \(25 /=\)
offer. Carr. and pkg. \(2 / 6\) extra.

\title{
of \(E x\) Govt.
}

\section*{GENALEX A.C. MOTORS}
\(230 / 250\) v. \(0.6 \mathrm{amp}, 1,350 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 50\) cycles, single phase.
 pald
P.M. M.C. SPEAKERS
\(2 \sharp\) in., 2.000 olmm transformer. 3 obms voice coil 19/6
5-WAY PUSH-BUTTON CONTROL UNIT With indica tora and knife awitch. Complete in cesse 5/6 MICROPHONE \& HEADPHONE ASSEMBLY.
Ex-58 Mk. 1 Set. 2 mikes, 2 palrs headphones, satchel 25/and dry battery carrying case. Carr paid

FRAGTIONAL H.P. A.C. MOTORS Converted from ex-Govt. Generators

Brish type 220250 จ. 60 cycles approz. 5,000 r.p.m. Overall diam. \(10 \times 4 \mathrm{in}\). zin. spladie extends 1 ln . both ends. Post \(37 / 6\) 2/6 extra. \(37 / 6\)

\section*{RADAR VIEWING UNITS}

Consisting of Gin. diameter Electrostatic C.R. Tube, 7 valves inuluding four EF50, potentiometers, resistances

Type Demolition Mk. 1.
EX-ARMY TEST SET-NEW

For circuit continulty and general testing. \(\quad \mathbf{E 3 . 1 0 . 0}\)

\section*{f. UBBER COVERED 5-WAY CABLE} uravy duty. \(/ 6\) doz, yards.
Ex-U.S. ARMY ULTRA LIGHTWEIGHT HEADSETS
Deaf-aid type earpieces fin. dia. With soft rubber
ear fittings, 100 ohms. Brand new and packed..

Receivers, etc. Type R1147A 7-VALVE U.H.F. RECEIVER Range approx. 200 megacycies (with 4 Acorn valves)

A Real Opportunity!
Beautifully constructed and fitted with micro.condenger drive. valve types: two ExH6. one EBC33, three 95 . Sne 955 . In back metal case, \(8 \times 7 \times 6\) in. Set
complete with valves. Carr. paid.

EX-R.A.F. CAMERA MOTORS Dimensions \(3^{*} \times 2^{-} \times 1\) 12 12 v and 24 v . 8/6

\section*{POLARISED RELAYS}

115 obms +115 ohme. \(6 \mathrm{in} . \times 3\) in \(6 /=\)

Ex-G.P.O. TELEPHONE TRANSMITTERS

On table stand with acreened lead and Jack Plug. New. Carr. 13/6
pald.

OSCILLATOR UNITS. Type 217.
There units contain very useful components: two EF50 Valves, three P.O. type Relays, numerous Condensers including two 20 ष. 25 mfd . Electrolytics, Resis- \(19 / 6\)
tors, Potentiometers, etc. Bargain price, carr. pd.

PULSE MODULATOR AND MIXER
W6331

Valves: two 635, three VR66, one VR65, one EB34, and Rectifier 5U4. Transformers, resistances, coa- \(40 /=~\) densers. etc. Carr. and pkg. 5 /-extra

Please Note: All carriage charges relate to the British Isles only
We do not issue lists or cata.ogues
LONDON CENTRAL RADIO STORES, 23, LISLE ST. (GERrard 2969) LONDON, W.C. 2
Closed Thursday 1 p.m. Open all day Saturday and weekdays 9 a.m.-6 p.m.

\title{
H TH WESTIMGHOUSEIO \\ 三
}

\section*{RECTIFIERS for AC/DC RECEIVERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & \multicolumn{2}{|l|}{Normal Outpu:} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Reservoir condenser} & \multirow[t]{2}{*}{Circuit} & \multicolumn{3}{|r|}{Dimensions} & \multirow[t]{2}{*}{Approx Weight Ozs.} \\
\hline & Volts & m.A & & mFd. & \[
W_{k g}
\]
Volts & & Ht . & Wdth & Lgth. & \\
\hline \[
\begin{aligned}
& \mathrm{HT} .46 \text { * } \\
& \text { 4A79 }
\end{aligned}
\] & 240 & 120 & 250 & 16 & 350 & Halfwave & 21]" & 21" & \(4 \frac{3}{}{ }^{\prime \prime}\) & 8 83 \\
\hline HT. 47 . 14A46 & 260 & 60 & 250 & 16 & 350 & \begin{tabular}{l}
Half- \\
wave
\end{tabular} & 21" & 24" & 35" & \(6 \frac{1}{4}\) \\
\hline \[
\text { HT. } 48_{*}^{*}
\]
\[
15 B 46
\] & 260 & 30 & 250 & 8 & 350 & Halfwave & 115" & 13" & \(3 \frac{3}{16}\) & 3年 \\
\hline
\end{tabular}
* Units available to bona-fide manufacturers, who should ask for Data Sheet 49.

WESTINGHOUSE BRAKE \& SIGNAL CO. LTD., 82, York Way, King's Cross, London, N.I

\section*{113, CMARING CROSS: ROAD. LONDON. W.C. 2}

\section*{SHORT}

"IVALEK " INTER CHANGEABLE COIL SET comprising the following wave rang es :-12-24 Meters, 20-36 Meters, 30-80 Meters. 9/- per set of 3 coils. WAVE COILS

MEDIUM WAVE COILS \(3 / 6\) each. Electronic and Electrical instruments and components Electronic and Electrical instruments and components.
M. ALLEN (Radio) Ltd.
113. CHARING CROSS ROAD, LONDON. W.C.2

Tel. : Gerrard 8734

FOR RADIO, TELECOMMUNICATION AND GENERAL ELECTRICAL WORK Mperspeed ROSIN
CORED
SOLDER Outstanding Characteristics of "SUPERSPEED SPECIAL"' ROSIN CORED SOLDER
I. Chemically activated rosin core ensures high degree of " wetting."
2. Increased fluidity accêlerates production.
3. Allows more moderate soldering iron bit temperatures, and minimises the risk of physical damage and alteration to the electrical values of small pre-calibrated components such as Capacitors, Resistors, Coil windings, etc.
4. Ensures complete mechanical bonding of joint
metals, maintaining perfect electrical conductivity.
5. Reduces to a minimum the solder required per joint and cuts down waste.
6. Residue is non-corrosive, solidifies to a semi-transparent film of high electrical insulation value, is nonhygroscopic and unaffected under tropical conditions.
7. The heating of the activated rosin core does not cause any deleterious fume deposits, or unpleasant odour.

\section*{AIR MINISTIRY APPROVED}

Supplied in a wide range of Gauges and Alloys on JIb. and 7/b. reels, works coils, or as required. Prices on application.
H J Enthoven \& Sole Manufacturers:-
H. J. Enthoven \& Sons Ltd., \(230^{\circ}\) Thornton Road, West Croydon, Surrey. THOrnton Heath 2462. Enthoven Phone London

\section*{THE New KOLECTRIC AUTOMATIC COIL WINDING MACHINE Type Al/I}

Write us for full information of this NEW DEVELOPMENT IN COIL WINDING.

A few features:
Totally enclosed headstock.
Ease of operation ant setting.
Winding of 2 coils simultaneously if required.
Infinitely variable micrometer wire gauge adjustment.
Wire £auges 25-50 S.W.G.

Winding Speeds up to 3,000 R.P.M.
Carriage setting handle.
Enclosed drive, with pedal control.

\section*{KOLECTRIC LTD \\ 20, Avonmore Road, LONDON, W.14}

BAYTHEON COMRIBUTIONS to dexelotement of Hearing Aids Little ualue autlasts big ane...

- and a group of the earliest Raytheon Hearing Aid valves. Apart from the improvement in hearing qualities, just look at the difference in size! Though less in height and of much smaller cross section, the present Raytheon Flat Valve provides five times the life

This is but one of many developments which have made Raytheon the leading Hearing Aid Valve.. outnumbering all other makes combined by nine to one !

Ask for complete information. Address your inquiry to Submarine Signal Company (London) Ltd., Artillery House, Artillery Row, London, S.W.I, England, or to

. . . is it Rotary or Pushbutton or Slider? Is it wanted for circuit selection, band selection, tap switching? Is it for a new design or in quantities for a well proved circuit?

Whatever it is - the answer is always OAK !
The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the floating rotor, ensuring self-alignment of each section.

AND
(11)

\section*{SWITCHES}

BRITISH N.S.F. CO. LTD., Keighley, Yorkshire
(Sole Licensees of OAK Manufacturing Co., Chicago)
A.B. METAL PRODUCTS LTD., Feltham, Middx.
(Sub-Licensees of N.S.F.)
The only Manufacturers of OAK Switches under Patent Nos. 478391 \& 478392

\title{
Announcing... six entirely new ELECTRONIC INSTRUMENTS by CINEMA-TELEVISION LIMITED
}

\section*{INDUSTRIAL}

\section*{ELECTRONIC} METAL DETECTOR

An automatic inspection equipment for the detection of ferrous and non-ferrous metal particies of all kinds in non-metallic substances such as foodstuffs, plastics, textiles, tobacco, timber, pharmaceutica! products, etc.

\author{
STANDARD ELECTRONIC COUNTER
}

A high speed electronic counter of particular appeal to the industrialist. Facilities are provided for batching, selective counting ctc., the maximum counting-speed for the equipment being 30,000 per minute.

\section*{UNIVERSAL OSCILLOSCOPE}

A unique instrument meeting fully the requirements of the serious users of oscilloscopes for laboratory and industrial purposes, arranged to permit readily the assembly of suitable units to fulfil every application. Complete range of units is available, e.g. stabilised time base, A.C. and D.C. amplifiers, \(S\) beam switch unit etc.

\section*{LABORATORY}

\section*{OSCILLOSCOPE}

A high grade \(6^{\prime \prime}\) screen oscilloscope expressly designed for laboratory use, incorporating hard valve linear time base, 3 megacycle " \(Y\) " amplifier and 1 megacycle " \(X\) " anmplifier. Cupboard and trolley are available if required.

DEMONSTRATION OSCILLOSCOPE

\section*{FOR LECTURE} PURPOSES
Demonstrator and student alike will acclaim the features of this equipment - \(15^{\prime \prime}\) tube with glare removing filter, 2 beam switch for simultaneous delineation of two ous delineation of two
recurrent wave forms, or their "addition" to produce a single resultant trace. Provision is made for setting up from rear of instrument.

\section*{CINEMA-TELEVISION LTD.,}

INCORPORATING BAIRD TELEVISION LIMITED WORSLEY BRIDGERD., LONDON, S.E. 26 Telephone: HITher Green 4600
Suppliers to ADMIRALTY, MINISTRY OF AIRCRAFT PRODUCTION, MINISTRY OF SUPPLY, ARMAMENT RESEARCH, etc. Manufacturers of Scientific lnstruments and Photo-electric cells.

VICTORIA RD., NORTH ACTON, LONDON, W. 3

-created in our own laboratories and manufactured in our own works-supplies almost every requirement of Electrical Industry. Grades have been designed for operation under the most severe and varied conditions, and many are resistant to mould and fungus growth.

1 Special types are evolved as new demands arise, and technical discussion on manufacturers' problems is welcomed.
Telephone Temple Bur 5927

\section*{ASTOR BOISSELIER \& LAWRENCE LTP.}

Sales Dept.: Norfolk House, Norfolk Streêt, London, W.C. 2 \\ \title{
LOUDSPEAKER \\ \title{
LOUDSPEAKER ACCESSORIES
} ACCESSORIES
}

TRUQUAL
Volume Control
10 Watts, \(9 / 6\)
\(20 \quad 11 / 6\)
With Escutcheon
Also COKE V.C. at 27/6, for use
with SEPARATOR.

\section*{SPEAKER SWITCH}
I. Set Speaker only.
2. Extension Speaker only.
3. Both Speakers.

With Escutcheon and Back Plate for fixing.

\section*{L.S. SEPARATOR}

Crossover 1,000 c.p.s., \(3-15\) ohms, 38 Watts, cleaner reproduction. Improved "top."

Made and Guaranteed by
WHARFEDALE WIRELESS WORKS BRADFORD ROAD, IDLE, BRADFORD

Phone: IDLE 416 • Grams: Wharfdel, Idle, Bradford

TELCON r.f CAbles for all Television and Radio requirements CABLE CHARACTERISTICS

DIAMETER:-0.225 inches. TYPE :-
"TELCOTHENE" Dielectric Flexible. PVC Sheath
Further details of this and other R.F. Cables on application

|in
the telegraph construction \& maintenance co. lid. Founded 1864
Head Office: 22 OLD BROAD ST., LONDON, E.C.2. Tel : LONdon Wall 3141
Enquiries to TELCON WORKS, GREENWICH, S.E.IO. Tel: GREenwich 1040

\section*{THE NEW ROTHEBIMEL CBYSTAL PICKUUF MODEL}

Pick introduction of the Model U/48 Crystal Pick-up brings high fidelity reproduction within the reach of all. Although priced to meet the most slender purse, the \(U / 48\) possesses many of the refinements found in the more expensive models.

Note the outstanding features of the U/48, which will convince you that it is an instrument of remarkable value and of outstanding merit.

\section*{PRICE 25/-}

- New type of tortional crystal element.
- Cartridge specially treated to withstand extreme humidity.
- Tone arm lifts to almost vertical position for easy needle changing.
- Negligible tracking error.
- Finished in attractive brown

Purchase Tax - - 9/43 cellulose.

\section*{OTHER MODELS IN THE FAMOUS ROTHERMEL RANGE}

\section*{DE LUXE MODEL}

Price E4.4.0 Plus purchase Tax With Volume Control \(\mathbf{E 4 . 9 . 0}^{2}\)
With Jewel Needle \(\mathrm{C4}, 10.0\)
With Volume Control and Jewel' Needle E4.19.0 Plus Purchase Tax.

\section*{SENIOR MODEL}

Price 45/- Plus Purchase Tax. With Volume Control 50
With Jewel Needle 51 .
With volume Control and Jeweil Needle 60/- Plus Purchase Tax.

If fitted with a Rothermel Jewel Tipped Needle which gives over 2,000 playings, PRICE \(31 /\). Purchase Tax \(11 / 7 \frac{1}{2}\).

\section*{Needle Replacement Service.}

On and after the date of this announcement, any Rothermel Jewel Tipped Needle when fitted to Pick-up and which fails within 3 months of purchase will be replaced free of charge.

The Rothermel lewel Tipped Needle, over 2,000 playings, no record wear. Straight type \(9 /\)-' Plus Purchase Tax.

MODEL S/8 and S/12
Price 42/- Plus Purchase Tax With Volume Control 47/With Jewel Needle 48/: With Volume Control and lewel Needle 57/- Plus Purchase Tax.

\section*{- CONSTANT VOLTAGE POWER SUPPLY UNITS}

THE UNIT ILLUSTRATED PROVIDES AN OUTPUT OF 200-275 VOLTS AT UP TO 250 mA ., WITH THE FOLLOWING PERFORMANCE SPECIFICATION:

STABILIZATION RATIO \(>100\) OUTPUT IMPEDANCE < I OHM. OUTPUT RIPPLE \(<2 \mathrm{mV}\). R.M.S.

MAY WE QUOTE FOR YOUR REQUIREMENTS ?
ALL-POWER TRANSFORMERS LTD.
8a, GLADSTONE RD., WIMBLEDON, S.W.I9
Telephone : LIBerty 3303

\section*{THE GRAMPIAN 461 RECEIVER AMPLIFIER}

This new high-grade reproducer has been specially designed for use in Small Factories, Hotels, Clubs, Swimming Pools, Municipal Buildings, etc., where it is desired to broadcast Radio or Gramophone Records and provide amplification of speech by use of a microphone. Let us send you further detaits.

A dual wave-band superheterodyne with Power Amplifier having an output of 15 watts. Provision is made for both pick-up and microphone inputs with separate volume controls and high and low impedance outputs. It is of extremely robust construction in an attractively finished metal case.

Price List \(£ 4200\)
Plus \(£ 220\)
Purchase Tax
A.C. Mains ONLY

NEW LINES?
GRAMPIAN REPRODUCERS LTD. Hampton Road, Hanworth, Middlesex

Phone: Feltham 2657
Scient,fie G. 6 A.

\section*{UNITED INSULATOR CO, LTD,}

OAKCROFT RD., TOLWORTH, SURBITON, SURREY

\section*{Interested in really? good reproduction}

IF SO hear the new loudspeakers in our Demonstration room.

\section*{Wharfedale "Corner" CABINET}

Triangular cabinet construction in solid mahogany of pleasing finish. (Available in solid oak-any shade to order.) Uses separate speakers for bass and treble, with new cross-over system at \(1,000 \mathrm{c} / \mathrm{s}\). Very pleasing balance between bass and treble. All bass resonance above \(50 \mathrm{c} / \mathrm{s}\) eliminated. Size of cabinet \(25 \frac{1}{2}^{\prime \prime} \times 18 \frac{1}{2}^{\prime \prime}\) deep \(\times 44^{\prime \prime}\) high. PRICE £48.10.0.

\section*{ACOUSTICAL "LABYRINTH S.L.I5"}

Solidly constructed cabinet of ingenious internal design giving equivalent of a five-foot, folded pipe, the antiresonances of pipe being cancelled by cabinet acoustic resonance. Wide-response bass down to \(35 \mathrm{c} / \mathrm{s}\) with good middle and top definition. Size \(2 \mathrm{I}^{\prime \prime} \times 15^{\prime \prime}\) deep \(\times 32^{\prime \prime}\) high. (Cabinet is in plain wood, WEBB'S can finish to your requirements.) PRICE £I9.1o.o.
SOUND SALES "PHASE INVERTER SPEAKER"
Cabinet design gives \(180^{\circ}\) phase-inversion and general effects are better than results obtained with a 4 -foot baffle. Uses Sound-Sales Dual-Suspension Unit that remains centralized during a parallel excursion of \(\frac{3^{\prime \prime}}{g^{\prime \prime}}\) in the magnetic field. Very good diffusion of sound. Cabinet size 14 " x \(14^{\prime \prime} \times 29^{\prime \prime}\) high. PRICE £I4.7.6.

Webb's are world known as Short-Wave Specialists-in addition we have for years joined in the quest for that elusive quality-really high-fidelity reproduction. The specialised speakers shown above are all good-we have our own ideas of relative merit but you may not agree-that last elusive "touch" is largely a matter of personal preference (or aural idiosyncrasy!).
hear them playing from:
WILKINS \& WRIGHT MOVING COIL PICK-UP
Lexington Moving Coil Pick-up.
Connoisseur Moving Iron Pick-up.
Sound Sales Radio Feeder and Amplifier.
Webb's "Quality" Amplifier.
Acoustical "QA/12/P" Amplifier, etc.
. . . . We are also stockists for Broadcast Receiver; and Televisors by MURPHY, BUSH, COSSOR, etc.

Write, phone or call
14 SOHO ST., OXFORD ST., LONDON, W. 1
Phone: GERrard 2089. Shop hours : 9 a.m.- 5.15 p.m. Sats. 9 a.m.-I p.m.

\section*{ANOTHER}

DENCO
WINNER!

\section*{COIL TURRET} CT6.

A unique superhet tuning unit complete with large dial and drive mechanism.

Price complete
£4. 10. 0
- 5 Bands covering completely 0.15-30 Mcs. (465 L.F.).
- Polystyrene insulation throughout-including coilformers.
- Permeability pre-set coils.
- All padding and trimming condensers included.
- Stable air spaced trimmers for adjusting circuit minimums.
full particulars of this and otrer new components in our lafest catalogue-from your stockist or direct-9d.
DENCO (CLAGTON) LTD., OLD ROAD, CLACTON, ESSEX

\section*{ALL-BRITISH @ VIBRATORS}

WIMBLEDON ENGINEERING CO. LTD.
GARTH ROAD • LOWER MORDEN • SURREY • TELEPHONE : DERWENT 48/4 • 5010
 in the design performance. suitable for televisanent magnet the design ongnet types are particularly suit. In the permand owing to angy in the magned whole magnetic structure, 25 ap. Our techon request. is usefully employed in the gap. is usetully further details a

\section*{REPRODUCERS \& AMPLIFIERS LTD., FREDERICK STREET, WOLVERHAMPTON}

Telephone: 2224|

\author{
Telegrams : Audio-Wolverhampton
}

\section*{Special Difers by --Hadiomart \({ }^{\text {T }}\) \\ RESISTORS}

10 Watt Vitreous. 250 ohms., 500, 2,000, 4,700, 5,000, 10,000, 20,000 \(22,000,25,000,2 / 6\) each.
100 Watt Vitreous. 20,000 ohms., 50,000 ohms., \(5 / 6\) each.
25 Watt Vitreous. 5,000 ohms., 7,000 ohms., 2/6 each. 5,000 ohms. tapped at 2,000 and 1,500 ohms., 3/6.
75 Watt Vitreous. 12,000 ohms. \(+2,000\) ohms, \(4 / 6\).
Also \(\frac{1}{2}\) watt Resistors, 4d. : I watt, 6d. ; 2 watt, \(1 /-; 3\) watt, \(1 / 6\) each.

> HIGH VOLTAGE OIL-FILLED CONDENSERS
\(4 \mathrm{mfd} ., 2,000\) v. wkg., \(15 / \cdot\); 1,500 v. wkg., \(12 / 6\); 1,000 v. wkg., \(10 / \cdot\); 750 v. wkg., 5/.
\(2 \mathrm{mfd} .1,000\) v. wkg., 5/-; 8 mfd .500 v. wkg., \(7 / 6\); 10 mfd .600 v . wkg., \(10 / \mathrm{l}\) TRANSMITTING BY-PASS AND COUPLING CONDENSERS \(002 \mathrm{mfd} .1,000\) v. Sprague screened, . 01, .1. 1/-each.
1 mfd . 1,000 v. Tubular paper, \(1 /-; .03 \mathrm{mfd} .2,500 \mathrm{v}\). Tubular in plastic ases. Tropical Clip Terminal. Threaded at end for chassis mounting, 3/-
01 ditto but 4,000 v. wkg., 3/-; . \(1 \mathrm{mfd}, 350 \mathrm{v}\). wkg. (no threaced terminal), \(1 / 6\).
.001 mfd. 5,000v. Test. High voltage Mica, \(2 / 6 ; .002\) mfd. ditto but \(1,250 \mathrm{v}\). Test, I/-; . 0001 mfd . ditto but \(2,200 \mathrm{v}\). test, I/6.

\section*{RECEIVER AND LOW POWER TRANSMITTING CONDENSERS}

5 mfd .600 V . Tubular paper, \(1 / 6\); .5 mfd . Mansbridge type, \(1 /-\); .5 mfd . 450 V . Tubular paper, \(1 /-\); .5 mfd .350 V . Tubular Aluminium, \(1 /=\); .25 mfd .500 V . Tubular Aluminium, \(1 /-\); 1 mfd .500 V . Mica Block type, 216 . I mfd 350 V Tubular paper, 9 d ; .02 mfd .750 V . Tubular Aluminium, \(/ /=\); .002 mfd .500 V . Mica Ceramic Casing, \(2 / 6 ; .000255 \mathrm{mfd}\) minium, \(/ /=; .002 \mathrm{mfd} .500 \mathrm{~V}\). Mica Ceramic Casing, \(2 / 6\), \(1 / 6\); .00015 mfd . 500 V . Silver Ceramic Tubular, \(1 / 6\).
500 V , ditto, \(1 / 6\); 00015 mfd .500 V . Silver Ceramic Tubular, \(1 / 6\).
Various values of Mica Condensers from .00015 to \(.005,6 \mathrm{~d}\). each.
25 mfd . 50 Volt Electrolytic, metal cased, \(2 / 6\).

\section*{SWITCHES}

2 pole 6 way single wafer (ideal for meter switching in \(T x\)), \(2 / 6\); 3 pole 3 way double wafer, \(3 / 6 ; 2\) pole 3 way triple wafer, \(3 / 6 ; 2\) pole 4 way 1 wafer, S/pole 4 way 2 wafers (triple wafer), \(3 / 6 ; 2\) pole 2 way and off 3 connections to common rotar and 3 sets stator contacts, 2/.. (All wellknown makes.)
Ceramic Switch. 2 pole 4 way double wafer. (The switch for that "Band Switching." Tx and cther R.F. applications.) (List price EI.), 5/-.

THE ABOVE ARE A SELECTION FROM OUR LIST No. 6 "W.W." SEND S.A.E. FOR A COPY.
48, HOLLOWAY HEAD, BIRMINGHAM, I.

\section*{EXCELLENT SELLING LINE}

High Fidelity S.H.E.F.I. Moving Coil Pick-ups
 in Walnut and black plastic finish

Plus 10/41. Purchase Tox.
2.0.0

Generous Trads Discounts. Ivory finish \(£ 2.3 .8\). Plus /I/7d. Purchase Tax.
The only Moving Coil Pick-up with high level output.
Will operate average receiver. No Pre-amplifier. No Shielded Transformer. No Hum Problem. Genuine High Fidelity reproduction flat to 12,000 c.p.s. With bass boost below 250 c.p.s. to allow for drop in recording level of 6 db . per octave.
Needles of approximately 0.3 to 0.4 inches long and 0.036 inches diameter should be used.
Available for home trade and expori. Immediate delivery in beautiful plastic finish.
This is one of many other electrical appliances.
Overseas enquiries are invited. Agency arrangements may be made.

\section*{INTRICATE PARTS \\ but not too}
 intricate for

\section*{Bullers}

Made in Three Principal Materials
An insulating material of Low Di-electric Loss, for Coll Formers, Aerial Insulators, Valve Holders, etc. PERMALEX
A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions. TEMPLEX
A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

\section*{Instrument Individuality}

The new Universal Bridge exemplifies the principle that individuality in instrument design is without virtue in itself; each innovation must directly contribute to functional efficiency and the evolution of a completely satisfactory measuring unit.

For general purpose use, the Universal Bridge Type TF 868, contains the necessary elements for the measurement of inductance and capacitance at \(1000 \mathrm{c} / \mathrm{s}(1 \mu \mathrm{H}-100 \mathrm{H}\) and \(1 \mu \mu \mathrm{~F}-100 \mu \mathrm{~F})\), and for d.c. resistance measurements \((0.1 \Omega\) to \(10 \mathrm{M} \Omega)\). Elaborations which would add appreciably to complexity or cost have been intentionally excluded.
By an ingenious mechanical arrangement, a single dial, in combination with a range selector, provides direct reading of \(L, C \& R\), without risk of confusion and without recourse to multiplying factors. Full specification and description available on request.

THE UNIVERSAL BRIDGE, TYPE TF 868

6uh to 6 MH available as individual coils or built into. 3 band or 6 band coil packs with RF stage. Deliveries rapidly improving. Enquiries invited.

TESTED
H. C. ATKINS Laboratories, 32, Cumberland Road, Kew, Surrey.

Richmond 2950

Faithful reproduction of all recordings from 12,000 c.p.s. to 30 c.p.s. will win many new friends for the CONNOISSEUR miniature moving iron Pick-up in 1948
The CONNOISSEUR reveals a wide range of notes and insiruments that has hitherto been hidden by bass and treble resonance. The CONNOISSEUR will reproduce every sound on the record. Try it and prove it.
Note new prices. Pick-up 54'- plus 17'7 P. tax Transformer \({ }^{13}{ }^{\prime}\) - nett.

Apply to
Albion Electric Stores, 125, Albion Street, Leeds 1 or to
Lawton Bros. (Sales) Ltd., Henry Square, Ashton-under-Lyne
Made by
A. R. SUGDEN \& Co. (Engineers) Ltd., Brighouse, Yorks

FOR more than 30 years, radio and electrical designers and engineers in all parts of the world F have found their most exacting requirements met by the unrivalled Dubilier ranges of capacitors and resistors, renowned for their constancy and complete reliability under the most arduous operating conditions. These capacitors and resistors, so important in Radio, Radar and Television equipment, are being continuously developed and extended in order to provide for every conceivable application.
Dubilier capacitors and resistors owe their unvarying quality, technical excellence and high degree of stability to the close control which is maintained thoughout all stages of their manufacture.

Full technical data and prices supplied upon request.

\section*{BRIMAR still" BRIMARIZING!}

TTYPES 36 and 39/44 were widely used in Philco and other American type receivers dated 1933-1936. Replacement by Brimar types \(6 J_{7} G\) and \(6 \mathrm{~K}_{7} G\) respectively, involves a change of sockets and re-alignment of receiver. The substitution of the new valves will give increased gain and it may be necessary to reduce screen voltages or re-arrange wiring to preserve stability.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TYPE} & \multicolumn{2}{|l|}{CHANGE SOCKET} & \multicolumn{2}{|l|}{CHANGE CONNECTIONS} & \multirow[b]{2}{*}{OTHER WORK NECESSARY} & \multirow[b]{2}{*}{PERFORMANCE CHANGE} \\
\hline & FROM & TO & FROM OLD SOCKET & TO NEW SOCKET & & \\
\hline 6J7G & \[
\begin{aligned}
& \text { U.X. } \\
& 5 \text { pin. }
\end{aligned}
\] & OCTAL & Pin No. \(\begin{array}{r}1 \\ 2 \\ 3\end{array}\) & Pin No. 2
3
4
8
7 & Connect Pins \(1 \& 5\) to Pin No. 8. Change top cap connector. Re-align receiver. See note. & \begin{tabular}{l}
SLIGHTLY \\
HIGHER GAIN.
\end{tabular} \\
\hline 6K7G & \[
\begin{aligned}
& \text { U.X. } \\
& 5 \text { pin. }
\end{aligned}
\] & OCTAL & Pin No. 1 2
3
4
5 & \[
\begin{array}{r}
\text { Pin No. } 2 \\
3 \\
4 \\
8 \\
7
\end{array}
\] & \begin{tabular}{l}
Connect Pin 5 to Pin 8. \\
Change top cap sonnector. \\
Re-align receiver.
\end{tabular} & \begin{tabular}{l}
SLIGHTLY \\
HIGHER GAIN.
\end{tabular} \\
\hline
\end{tabular}

Note: A higher value of screen dropping resistor (to Pin 4 of Type 6J7G) may be necessary to
ensure that the screen voltage does not exceed 100 volts. ensure that the screen voltage does not exceed 100 volts.

BRIMARIZING.... A scheme keeping devised by BRIMAR fove, a profitrepair lines on the move, a pre may
able means whereby radio sets able means whereby rado septy in the be kept working happily the shelf.
home and not waiting on then

\section*{Brimar RADIO VALVES}

STANDARD TELEPHONES AND CABLES LIMITED, FOOTSCRAY, SIDCUP. KENT.
A SERVICE PLAN FOR PLANNED SERVICE
36
39/44

\title{
PREMIER RADIO COMPANY
}

MORRIS \& CO. (RADIO) LTD.

\author{
ALL POST ORDERS to 167 LOWER CLAPTON RD., LONDON, E.5. \\ 'Phone: Amherst 4723. \\ ALL CALLERS to 169 FLEET STREET, LONDON, E.C.4. \\ 'Phone: Central 2833.
}

Terms of Business : Cash with order or C.O.D. over £1.
Send \(2 \frac{1}{2} d\) stamp for latest list.

\section*{RADIOGRAM CAEINETS}

RADIOGRAM CABINETS. Dignified sppearance and good workmanship. Size 31 big, high, \(18 \frac{1}{2}\) in. deep, 33 in . 中ide. French polished, veneered walnut. Price
\(\mathbf{5 2 8} .7 \mathrm{~s} .3 \mathrm{~d}\). Also ivailable complete with electric motor, auto stop and magnetic pick-up, \(83{ }^{\prime \prime}\) 6s. 2d, Ditto with Rothermel Crystal Pick-up, \(£ 38\) 12s. 7d. or with 8 record-mixer changer, \(£ 48\) 18s. Od.

\section*{GOVERNMENT SURPLUS OFFERS}

\section*{D/C TO A/C CONVERTERS. TYPE 1-Input 18/24 v.} D/C. Output 230 v .50 cycles, 100 watis, \(£ 5\).; TYPE \(2-\) Input 12 v . D/C. Output 230 v . 50 eycles, 75 watts, 86 ;
TYPE 3 -Input 100 v. D/C. Output 230 v. 50 cycles. TYPE 3-Input 100 v. D/C. Output 230 v .50 cycle
200 watte, 88. 200 watte, 88.
HIGH VOLTAGE
HIGH VOLTAGE BLOCK CONDENSERS. 1 mf .2 , 500 v working gize 5 in . \(\times 3 k\) in. \(\times 3 \mathrm{ma}, 5 /-\); 1 mif. 5,000 working size \(8 \mathrm{in} . \times 5 \mathrm{in} . \times 4 \mathrm{in}\)., \(5 /-; 4 \mathrm{muf}, \mathrm{J}, 000\)
 working size sin. \(\times\) bin. \(\times 2\) ini,, \(12 / 6 ;\)
working size \(4 \frac{1}{2}, \times 4 i u . \times 2 t i n, 7 / 6\).
SHORT WAVE CONDENSERS. High-ETade; Veranic insulation. Super Midget type. Slagle-gangs avaikiale in \(10,20,50,75,100\) p.f. (75 p.f. has double spindle for ganging). Price \(2 / 6\).
2-GANG, in \(4.8, ~\)
2-GANG, in 4.8, \(9.6,27.1,50,75\) p.f. Price 5/-
driven generator with two separate units for approximately 1 metre and 7 metre operation, inchide 2 CV6 (VR135) horned triodes and ove EAB0 diode, aiso a large quantity of U.H.F. tuning gear. Contained in a teak case, size \(181 \mathrm{ln} . \times 8 \mathrm{in} . \times 8 \mathrm{ln}\). Price \(30 /=\)
OUTPUT TESTEA TYPE 8 conslats of a unit incorporating three separate diode detectors and a 3 -valve Amplifier, each diode with its separate U.H.F. Tuning System. A retractable 18in, aerial is fitted and three VR130 (HL23) valves, 3 D.I. Diodes and a large quantity of U.H.F. \(18 \times 8 \times 8 \mathrm{in}\). Price 30 -, or minus three HL23 valves \(18 \times\)
\(15 /-\)
METAL RECTIFIERS.

TEST UNIT TYPE 73 conalsts of a special purpose Oscilloscope that requires only rewlring and the additiona of a few condensers and resistors to convert into a
 are included. Controls are ".'Brightness," "Velocity," "X 8hift,", "Y Shift," Focus Amplitier, "in/out,'"
"Culbrate," "on/off/TX." Price \&8 8s. Od. "Calbrate," "on/ofl/TX
Carriage and packing, 20/. Tx., incorporates a 230 v. 50 c/s Power Pack, with is 2 EF50, 1 EC52, 1 EA50, \(15 Z 4 \mathrm{G}, 1\) Y 63 Magic Eye, and a large quantity of condensers, reaistors and tuning gear. a large quantity of condensers, reaistors and tuning gear.
Contained in an attractive ateel case. Bize \(10 \frac{1}{2} \times 9 \times\) 8 in. Price \(45 /-\quad\) Carriage and packing \(5 /-\)
RELAY UNIT TYPE 9 conaists of a 24 v . operated relay unit incorporating 3 KT33C valves, a telephone line
(Unlselector) witcin with 6 poles, 26 contacts, 5 P.O. (Unlselecitor) swttei with 6 poles, 26 contacts, 5 P.O. type relays, 2 high-speed relays, and a quantity of other
material. Contained in an attractive relay rack type material, Contained in an attractive relay rack type
metal case \(19 \times 19 \times 9 \frac{1}{\mathrm{~h}}\). deep. Price \(\& 4\) 5s.. or without valves, \(30 /-\). Carriage and packing \(5 /-\).

\section*{R10\% ONE OF TEE ARMY'S FINEST COMAug., 1945.) 9 Valuer, R Fr, anp. onc. Frequency Changer, 2 TF's. (465 kc .). 2nd Detector, AVG Af. smp. AO mains, \(100-250 \mathrm{v}\). or 12 k secum Trequency range 17.5 to \(7 \mathrm{~m} / \mathrm{cn} ., 7.25 \mathrm{~m} / \mathrm{cs}\). to
\(2.9 \mathrm{~m} / \mathrm{cs}, 30\) to \(1.2 \mathrm{me} / \mathrm{s}\). Monitor L .8 . built in. Complete with out put stage. Write for full details \(\$ 1616 \mathrm{~s}\). complete.}

VARIABLE CONDENSERS. Ceramic insulation. 2.gang \(.0005,7 / 6 ; 3\)-gang \(.0005,10 /-4\)-gang \(.0005,10 /-\);

TYPE 103 ROTARY TRANSFORMER. Normal rating is 19 v. D/Cinput. Output, 300 volta \(30 \mathrm{mi} / \mathrm{a}\) and 6.5 volt a, D/C. By applying between 200 and 250 volts D/C may be used to charge accumulators. The 19 -volt side will charge a 6 -volt accumulator at \(2-3\) amps. the 6.5 side a 2 - 0 olt accumulator at \(1-2 \mathrm{a}\). With a 12 -volt input to the 19 -volt side, 180 v , at \(30 \mathrm{~m} / \mathrm{a}\) and 4 v . at 3 a . mas be ohtained. With a 6 -volt input to the 6.5 aide, 160 v at \(30 \mathrm{~m} / \mathrm{a}\) may be obtained. By extending the spindle which is flush with the frome and applying 200 to 250 v . D/O mains to the 300 v , side, the unit becomes a power ful bigh-speed electric motor, sultable for small drilling machines, etc. Similarly, it may le used with 6 or 12 v . ring mugnet and is of mbstantial construction, cost tag originally over \&5 A fortunate purchase enables us to offer these fine units at \(10 / \mathrm{l}\). DENCO C.T. 3 COIL TURRET COVERS. . 15 to \(42 \mathrm{~m} / \mathrm{s}\). in six bands. Consists of completely wired coil paok for commumication receiver, including trimmers, puiders, seales, knobs. Mechanical bandspread. I.F. \(1.6 \mathrm{~mm} / \mathrm{cs}\). Rus. atare, iroll cores, polvatrene insulation. Circuits
available at \(1 / 6\). Price \(£ 7\) Os. 10d. LOUDSPEAKERS. sin. P.M., 15/*, with trans., 20/-. 6in. P.M., 17/6, with trans., \(22 / 6\). 8in. P.M., 20/-, कith trans, \(25 /=\). 10 in . P.M., \(15 \Omega 6\) watt, \(47{ }^{\prime \prime} 6\). 12 in. P.M. \(15 \Omega 12\) watt, 85.12 in. P.M. \(15 \Omega 12\) watt twin-
cone high flidelity, 8885 . 12 in. P.M. 20 watt, Ely \(^{2}\) Find \(3 \Omega 6\), Field with trans., \(27 / 6\). \(10 \mathrm{in} .2,100 \Omega\) Field \(3 \Omega 6\) watt, 30 /
BABY ALARM KIT. Consists of a complete kit of parts or a mains-driven amplifier, microphone and Midpet speaker, to enable sound of baby's breathing or crying
to be heard in any room. Complete with circuit. \(5 \mathrm{5} / \mathrm{m}\)
CRYSTAL RECEIVER KIT. Complete with phones. 'he ideal gift for the sclioolboy, \(10 / \mathrm{m}\).
WEARITE TUNING PACK. A super job. Completely wired with padders and trimaners. Loug- medium- and short-waves. Iron core coils, 42/-
2-VAIVE SHORT-WAVE BATTERY KIT. A complete kit of parts for a 2 -vulve receiver, covering \(15-600\) metres, ncluding valves, colls, drilled chassis, II.T. and L.T. dry \(f\) double last approximately 6 to 12 months. A prir E3 16s. 4 d .
STANDARD OUTPUT TRANSFORMERS. Match any push-pull pentodes to 3 or 15 ohms. Handles 8 watts,

GRAMOPHONE AMPLIFIER KIT. A complete kit of perts to construct a good quality minns-driven \(2 \frac{1}{2}\)-watt gramophone amplifier. May be used with any pick-up. Complete with circuit, \(£ 35 \mathrm{~s}\).
SUPER OUTPUT TRANSFORMERS. By means of a eries parallel arrangement wherein the maximum hindag is used or each ratio extremely ligs effciency to any voice Coll (2 to 30 ohm) type Mo.15.15 watte, \(35 /\).
METERS. A huge purchase of milltary surfilus meters dlows us to offer the following bargains. Best makes. Bakelite cases, mices are approx. Doriginai coat. Price 300
500
\(2 \frac{1}{4} \mathrm{~A}\)
4
20 A
40 A
25 A
25 A
1 M
100
200
1 M
5 M
\begin{tabular}{|c|c|c|c|c|}
\hline 300 v . & \(3)^{*}\) & - \(/\) A & Flush & C \\
\hline \(500 \mathrm{M} / \mathrm{A}\) & 3 & & Proj. & M/CD/O \\
\hline \(2 \frac{1}{8}\) A & \(2^{\prime \prime}\) & & Flush & Thermo \\
\hline 4 A & \(2{ }^{\prime \prime}\) & & Port & H. Wire \\
\hline 20 A & 2 & \(25 \mathrm{M} / \mathrm{A}\) & Flush & M/C D/C \\
\hline 40 A & \(2^{\prime \prime}\) & 121 M/A & Flusb & M/C D/O \\
\hline 25 A & 31 * & \(5 \mathrm{M} / \mathrm{A}\) & Flush & M/C D/C \\
\hline 25 A & \(3{ }^{1}\) & \(25 \mathrm{M} / \mathrm{A}\) & Proj. & M/C D/C \\
\hline \(1 \mathrm{M} / \mathrm{A}\) & 2 " & 1 M/A & Flush & M/C D/C \\
\hline 1 ¢0 \(\mathrm{M} / \mathrm{A}\) & \(2{ }^{\prime \prime}\) & 150 MLA & Flush & M/O D/C \\
\hline \(200 \mathrm{M} / \mathrm{A}\) & \(31{ }^{\text {² }}\) & \(200 \mathrm{M} / \mathrm{A}\) & Fiush & M/C D C \\
\hline \(1 \mathrm{M} / \mathrm{A}\) & \(3{ }^{\text {a }}\) & \(1 \mathrm{M} / \mathrm{A}\) & Flush & M/C D/O \\
\hline \(5 \mathrm{M} / \mathrm{A}\) & \(24^{*}\) & \(5 \mathrm{M} / \mathrm{A}\) & Flush & M/O D/C \\
\hline
\end{tabular}

\section*{MIDGET RADIO KITS}

MIDGET RADIO RIT. Build your own midget rado A connplete set of parts, including valves, loudspeake and instructions. In fact, everything except cabine T.R.F. radio operating on \(200-260 \mathrm{~F}\) mans, \(\mathrm{A} / \mathrm{C}\) or D C Wavelengths covered 200-557 ind 700-2,000. Size \(10 \times 6 \times\) 6in. Completely drilled chassis. Price incluiling tax, \(£ 8\) Os. 11d. drilled chassis.

SUPERHET MIDGET RADIO KIT. A complete kit o parts for an 5 -valve superhet. Covers \(16-50\) and \(200-557\) metres, AC/DC \(200 \cdot 250\) v. Size, \(10 \times 6 \times 6 \mathrm{jim}\). Coms pletely driled chassis. Price including tax, 88 for either

ELECTROSTATIC VOLT METERS, \(0-5 K\), 31 in . acale flush mounting, 4itin. dia. 65/- each.
FERRANTI 0-500 MICROAMP METERS, \(3 \frac{1}{2} \mathrm{in}\). dia. scale \(2 \frac{1}{2} \mathrm{i}\)., res. 75 ohms., flush mounting, 25/-.
AIR-DIELECTRIC TRIMMERS. Super-midget variables ceramic insulation, screw-driver adjustmest, 25 , 50 or 100 pF . 1/-
FERRANTI 1 MILLIAMP METERS. 31 in . external hometer, fush mounting, with self-contained Westing. fifty divisions, ritted in cell-made wooden box \(6 \times 5 \times\) bin., 35/-.
MAINS TRANSFORMERS. Military surplus. All 230 v 50 cycles input.
Type No. Output

ALL-WAVE SUPEREET KIT, A KIt of Parts to build a. 6-valve (plus rectilier) receiver, covering \(16-50\) metres. Medium and Long-wave bands. Valve line-up \(6 \mathrm{~K} 5,6 \mathrm{~K} 7\), 6Q7, 657, two \(25 A 6\) in pushpull. Metal Rectibers are
incorporated tor H.T. supply. Output impedance is for incorporated tor H.T. supply. Output impedance is for
3 and 15 ohms. The latest Wearite Coil Pack incorporat3 and 15 ohms. The latest W earite Coil Pack incorporit-
ing Iron Dust Coils is used, making construction and ing Iron Dust Coils is used, making construction ant alignment extremely simple. A pick-up position on the Wravechange switch and pickup terminals is provided. A cabinet. Chassis size \(14 \times 6 \mathrm{in}\). Overall height, 3 ln Price \(\mathbf{f 1 1} 16 \mathrm{~s}\). 3d.
Suitable loudspeakers are the GOODMANS 10in. 6-wat I'M. at \(47 / 6\), or for superlative reproduction, the
Goodmans 12in. P.M. at \(\mathbf{f 6} 15 \mathrm{~s}\).
SUPERHET TUNING PACXS. Completely wired and aligned. 13-40, \(40-120,190-570\) metres. R.F. stage, condenser, drive. Litz wound polysiyrene insulation, permeablity duned I.F.'s, \(7 \mathrm{k} / \mathrm{c}\). bandwid th. Price com plete \(£ 317 \mathrm{~s} .6 \mathrm{~d}\). ELECTRIC GRAMOPHONE MOTORS. A few available Write for details.
ALUMINIUM CFASSIS. Substantially made of bright aluminlum, with four sides
\(7 \times 31 \times 9 i\)
\(10 \times 8 \times 21\)
\(14 \times 8 \times 21\)
\(14 \times 8 \times 2 \mathrm{in}\) 1/-

20

\section*{Providing technical information, service and advice in relation} to our products and the suppression of electrical interference

\section*{Window Mounting Aerials}

We have been examining some official statistics showing that of all complaints of interference reported by the public to the Post Office Engineering Department, a very large proportion can be attributed to the set user trying to do without any aerial, or at least a wire round the room.

Readers of this journal know that a good outside aerial is necessary in order to obtain a reasonable signal to noise ratio. They also know that their advice is often ignored owing to expense, trouble and difficulty of erection. All these objections can be met by the recommendation of a "Winrod"*I window mounting aerial. The cost is low, under a pound and cleliveries are ex-stock. We all know it cannot be said to take the place of a normal aerial such as we would like to see erected, but it is an out-door aerial that can be fitted at window-sill level, and as such, the signal to noise ratio must be many times better (very often 20 db .). Its more general use would add greatly to the enjoyment of radio reception and would have the effect of giving new life to an old set.

Where there is really serious interference then a full blooded anti-irterference aerial such as the "Eliminoise "*2 and "Skyrod "*3 would have to be considered.

\section*{Suppression of Interference}

Although regular readers of the "Wireless World" do not require
to be reminded of the fact, the general public should remember that no aerial suppresses interference; it may, if correctly chosen and erected with skill, enable the listener to pick up programmes without interference, but the interference has not been suppressed.

With a "Winrod" or other aerials, mains borne-interference may be present. This can be dealt with by the use of a "Belling-Lee " set lead suppressor L. \(300 / 3^{*} 4\) which is normally fitted at the plug point supplying the receiver, and ensures that the mains lead going to the receiver is free of interference. This is important as at no other time do the mains come so close to the set. An alternative arrangement is to fit a "Belling-Lee" L. III \(8 / \mathrm{CT}^{*} 5\) to the incoming mains of the house, but this may be rendered ineffective in a terraced house or flats by reradiation through the walls, of interference from neighbouring wiring. It would also be ineffective if the interference is caused by faulty switches or wiring inside the house.

\section*{Midland Television Service}

At the time of writing it occurs to us that information of the vision and sound frequencies of the Birmingham television station (Sutton Coldfield) may be released before this goes to press. Experience in the London area has shown that there would be a rush by members of the public to have aerials erected, and certainly wide-awake dealers will be anxious to announce to passers-by that they are in fact television minded. We have put ourselves in the position that within a few days of the release of the vital information, Belling \& Lee Ltd. will be able to despatch aerials. We have in fact many orders already on our books.

If rumours are to be believed, the service area will be very great and the potential market enormous.

\section*{Belling-Lee Service}

Most wireless dealers will be glad to give service on Belling-Lee products. To assist both the dealer and the public, we are issuing window cards to dealers so that it is clear to prospective customers that willing and knowledgeable service is available within. Every dealer
cannot know all the answers, but they are supported by an efficient specialist service department who are here to give prompt attention to their queries.

If this comes to the notice of any dealer who has not yet had a card, and who is interested, will he please get in touch with us giving the name of his preferred wholesaler.

*I " WINROD " (Regd trade mark) 8 feet, 3 section, window mounting aerial.

\section*{L581}

Price each 19s. 6d. Supplied EX-STOCK in cartons each containing 6 "WINRODS."
*2 " ELIMINOISE" (Regd. trade mark) anti-interference transformers for attachment to "Skyrod" vertical aerial or a 6 oft horizontal aerial.
L308 Pair of transformers with receiver connecting lead L621/5. Price £4 10s. 0d.
L308/K Complete kit with L1221 screened downlead, aerial and earth wire, and insulators. For fitting horizontally. Price £6 6s. 0d.
*3 "SKYROD" (Regd. trade mark) vertical aerial in 3 sections for chimney mounting.
L518 Collector only. Price £4 4s. Od. L618 Complete kit with "Eliminoise " matching transformers, L1221 Screened feeder, earth wire and insulator. Price \(£ 10\) 0s. Od.
\({ }^{*} 4\) Set lead suppressor L300/3
Price \&2 19s. 6d.
*5 Capacitor suppressor, centre lapped, for fitting at the meter board or at the source.
L1118/GT Price
£1 7s. 6d.

E.M.I. basic training fits you for entry to Careers in such fields as :-

\section*{SERVICE} ENGINEERING

OPERATING DESIGN AND DEVELOPMENT -
TECHNICAL SALESMANSHIP TEACHING

TThe Correspondence and College Courses provided by E.M.I. Institutes which cover recognised diplomas such as the City and Guilds, etc. are written and supervised by E.M.I. \(\star\) scientists who are specialists in Electronic Science.
Courses are already available in such subjects as Basic Radio, Basic Television, etc., and the prospectus is being constantly extended.
With this basic training you can eventually become a specialist in Television, Radio Communications, Radar, Navigational Aids, Audio Frequency, Medical and various Electronic applications. There are also short courses for Executives, Amateurs, Students, etc.

For full details apply to your local "H.M.V." Radio dealer or direct to :The Principal: Professor H. F. TREWMAN, M.A. (Cantab), M.I.E.E., M.I.Mech.E., M.Brit.I.R.E. E.M.I. INSTITUTES LTD Dept. 16, 43, Grove Park Road, Chiswick, London, W. 4 * The E.M.I. Group includes "H.M.V.", Marconiphone and other important electronic interests

> SALFORD ELECTRICAL INSTRUMENTS LTD. Phone: BLA. 6688 (6 lines) Grams * Cables "Sparkless, Manchester"

Proprietors. THE GENERAL ELECTRIC CO. LTD. England.

\title{

}

This is a 10 -valve amplifier for recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10 -watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to \(20,000 \mathrm{c} / \mathrm{s}\) and a maximum of .5 db down at \(20 \mathrm{c} / \mathrm{s}\).
A triple-screened input transformer for \(7 \frac{1}{2}\) to I5 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.
Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis.

Send for full details of Amplifier type AD/47

\section*{C.P.20A. 15 wатt AMPLIFIER}
for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and "stand by" positions and only consumes \(5 \frac{1}{2}\) amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price \(\mathbf{1} 2800\)

\section*{RECORD REPRODUCER}

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response (\(30-18,000 \mathrm{cps}\).) and low harmonic distortion (I per cent. at 10 watts). Suitable for any tope of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v . 3 amp . L.T. and \(300 \mathrm{v}, 30 \mathrm{~m} / \mathrm{a}\) H.T. to a mixer or feeder unit.

Complete in metal cabinet and extra microphone stage. As illustrated. Price \(25 \frac{1}{2}\) Gns. CHASSIS, without extra microphone stage. Price \(£ 21\),

257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W. 19
TELEPHONES: LIBerty 2814 and 6242-3.
telegrams : "vortexion, wimble, london."

\section*{here is the way to BETTER SOUND DISTRIBUTION}

The Multicellular type of horn has been developed to facilitate quality sound reproduction in auditoria by providing satisfactory distribution of the higher audio frequencies essential for intelligibility. Vitavox Multicell horns are available in two types having lower cut-off frequencies of 220 and 550 c.p.s. respectively and in a wide range of cell combinations to suit particular circumstances.

\section*{MULTICELL HORNS}

Obtainable from your VITAVOX Dealer but do not hesitote to Consult us in case of difficulty or if you require further details.

Vitavox Limited, Westmoreland Road, London, N.W. 9 Telephone: Colindale 8671-3

\section*{Vours ffaitbfully...}

THIS ADVERTISEMENT FIRST APPEARED DURING MAY, 1946. WE ARE STILL SELLING AMPLIFIERS AS A RESULT; THIS IS PARTLY DUE TO THE ADVERTISEMENT, BUT MAINLY DUE TO THE FACT THAT ONE AMPLIFIER "SELLS" SEVERAL MORE-SIMPLY A QUESTION OF HEARING IS BELIEVING.
THE FIRST AMPL!FIER BY SOUND SALES LTD. APPEARED IN 1934, AND THE LATEST SERIES INCLUDES THE 6 WATT, \(12 / 14\) WATT, 35 WATT AND 50 WATT MODELS, INCORPORATING ALTERNATIVE TYPES OF TRI-CHANNEL ELECTRONICALLY MIXED TONE CONTROL UNITS, TOGETHER WITH V.U. OUTPUT METERS IF REQUIRED.

AEENTS. Barnes \& Avis, Reading; Bowers \& Wilkins, Worthing; Binns Ltd., Newcastle ; Dalton \& Sons, Ltd., Derby; Clark \& Sons, Isle of Wight ; Hickie' \& Hickie, Ltd., Reading (and branches) ; Thomas Lynn \& Sons, Andover; Merriots Ltd., Bristol; Needham Engineering Ltd., Sheffield: Pank's Radio, Norwich; Sound Led., Cardiff; Bernhard Smith, Barnstaple: Sound Services, Jersey, C. I. : Precision Services, Edinburgh: Seals Ltd., Southsea; G. E. Samways, Hazel Grove; Weybridge Radio Electric, Weybridge ; West End Radio, Farnham; Vallance \& Davison, Ltd., Leeds (and branches).

\section*{Found Fales 2 to.}

57, St. Martin's Lane, London, W.C. 2
(TEMPLE BAR 4284)
WORKS: Farnham, Surrey. (FARNHAM 6461/2/3)

RESISTORS • CERAMICONS • Hi-K CERAMICONS P POTENTIOMETERS SUPPRESSORS . VITREOUS ENAMELLED WIRE-WOUND RESISTORS Erie Resistor Ltd., The Hyde, London, N.W.9, England Telephone: COLindale 8011-4. Cables: RESISTOR, LONDON. Factories: London \& Gt. Yarmouth, England. Toronto, Canada'Erie, Pa., U.S.A.

ances of all kinds, Car Lighting Systems, Bell and Teleprinter Circuits. May be used on AC or DC mains.

Still in short supply but ask your Local Dealer to put your name down on his waiting list.

\section*{The SHERLOCK HOLMES OF RADIO SINCE I93O}

The Draytou " R.Q." is a 25 -watt motor unit geared to a final shaft, to which may be fitted eccentrics, arms or cranks, gears, links or pulleys for actuating valves or dampers, movements, switchgear or other devices.
Unidirectional or reversing, with or without self-switching, for \(100 / 1\) ro or \(200 / 250\) volts A.C. Both types are fitted with an auxiliary twoway switch actuated by movement of the tinal shaft, for operating auxiliary gear such as fan motors pumps, interlocking devices, pte
fWAL SHAFT SPEEDS

\begin{tabular}{l}
\multicolumn{1}{c|}{ for } \\
Operating Valves, \\
Dampers or Rheostats, \\
Cinema Projectors, \\
Rotating Screens, \\
lliuminated Signs, \\
Small Working Models, \\
Geneva Movements for \\
Drum-type Switches, \\
Rocking Baths, Work \\
Movement, Soldering \\
and Welding Fixtures, \\
Continuous Turning, \\
Feed of Light Strip \\
Under Process. \\
\hline
\end{tabular}

Operating Valves, Dampers or Rheostats, Cinema Projectors, Rotating Screens, Small Working Models, Geneva Movements for Drum-type Switches, Rocking Baths, Work Movement, Soldering and Welding Fixtures Continuous Turning Feed of Light Strip Under Process.

\section*{SYLMAR RADIO LTD. BARGAINS}

All articles are new and guaranteed and are of well-known manufacture.
Two-gang . 0005 Condensers 8/6
Mains Transformers :
\(280 \cdot 0-280 \mathrm{v} .0 .3 \mathrm{v} .3 \mathrm{amp}, 5.0 \mathrm{v} .2 \mathrm{amp}\).
\(60 \mathrm{~m} / \mathrm{a}\) Chokes, 400 ohms.
465 Kc. I.F.'s, iron dust cored, permeability tuned, \(1 \frac{1}{1} \mathrm{in}\). 1 in. can
pr. 15/6
Midget I.F.'s, iron dust cored
рг. 15/6
7 mes I.F.'s \(\quad \cdots \quad\). \(\quad\). \(\quad .\).
GRAMOPHONE AMPLIFIER KITS, 4 watts output, includ-
ing 2nd detector and A.V.C. conlponents. All parts
mounted. Complete with circuit. A.C.
Gramophone Amplifier Kits as above, \(\mathrm{AC} / \mathrm{DC}\)

\section*{GOVERNMENT SURPLUS OFFERS}
.1 mid. 350 v. Condensers
.1 mfd 1,000 v. Condensers \(\quad . . \quad\)... \(\quad . . \quad\)... doz. 6/6
\(.1 \times .1 \times .1\) Condensers, 250 :-
Octal Valveholders
Mazda type Valveholders
Mazda type Valvehoiders 3d.
12 v. 1 amp. Reciifiers
Sin. P.M. Speakers 12/6
6hin. P.M. Speakers with trans. 15/6
23in. Drums
3-pole 2-way Switches, long spindles
\(16 \times 8450 \mathrm{v}\). working Cond.
2
\(8 \times 8450 \mathrm{v}\). working Cond.
\(7 / 6\)
Clips for above
Vibrator Pack. 12 v. Input 910 : \(80 \mathrm{~m} / \mathrm{a}\) output. Special price to clear
3-way . 3 amp. Line Cord, fio ohins per foot.... ... yd. 1/6
Terms: Cash with Order or C.O.I). Post Oraters only, carriage and packing extra.
Retailers' enquiries foi above velcomed.

\section*{SYLMAR RADIO LTD.}

197, Lower Richmond Road, Richmond, Surrey

\section*{TIME BASE UNIT TYPE 84}

Sweep is substantially linear over the frequency range which may be extended downwards to 0.5 cps . by the addition of external capacitors. The time base may be locked to an external impulse, or the signal developed on one of the Y plates, or to the 50 cps . mains supply. Sweep amplitude is controlled without affecting amplitude or synchronizing and the amplifier delivers balanced P,P. voltage to the \(X\) plate e eliminating trapezium distortion, etc. \(^{\text {e }}\)

Single stroke operation is available. Amplifier voltage gain is about 25 and the full screen diameter is covered without distortion. A switch arranges the internal connection of \(\mathbf{X}\) plates to terminals on the front panel with A.C. or D.C. coupling and for single-ended or P.P. input, other positions interconnect amplifier and sweep generator. Self-contained power pack unit may be used independently as a portable time base or with other makes of oscilloscope.

Main features include :
(i) Sweep frequency, 5-250,000 cps.
(ii) Automatic synchronizing.
(iii) Sweep expansion independent of freguency.
(iv) Push-pull deflection.
(v) Single-stroke operation.
(vi) \(\mathbf{X}\) Axis Amplifier usable independently
(vii) Plate connections available on front panel. Full details on request.

\section*{(1AL) Lydiate Ash laboratorifs tydiate ast - wear bromsgrove -worcs.}

\section*{Stabilised Insulation BY MODERN IMPREGNATION METHODS}

\section*{HIGH-SPEED PRODUCTION}

HYMEG Syntheric Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvement of electrical properties of windings; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced stoving time necessary.
Now, special methods of continuous conveyor impregnation and baking developed with the use of HYMEG have still further reduced processing times to a fraction of those previously believed necessary.
Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

\section*{HYMEGLAS} (REGD.)

\section*{GLASS FIBRE INSULATION SYSTEM}

After much research in our laboratories and in conjunction with many well-known specialist manufacturers, we have now evolved the Hymeglas system of Insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture.

This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below \(200^{\circ} \mathrm{C}\). Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of Hymeg impregnation with the Hymeg as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughout.
Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.
Due to the excellent space factor of glass fibre as compared with the more usuai asvestos and mica Class B insulations, it is often possible in redesigning with the Hymeglas system to employ larger copper sections with well-known advantages. The Berger Technical Service-the research work of which produced " HYMEG " and " HYMEGLAS" is available to advise manufacturers on al! problems of insulation. Get in touch now with-

LEWIS BERGER \& SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDON. W.1.
Telephone: MAYfair 9171.
MANUFACTURERS OF HIGH-PERFORMANCE INSULATING VARNISHES AND ENAMELS

40 Advertisements

\section*{FOR THE}
radio Serviceman dealer and owner
The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful.
Write to the I.C.S. Advisory Dedt. stating your requirements. Our advice is tree.

\section*{INTERNATIONAL CORRESPONDENCE SCHOOL Ltd.}

DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C. 2 Please explain fully about your instruction in the subject marked \(X\).

Complete Radio Engineering Aadio Service Engineering
Radio Service and Sales
And the following Rodio Examinations:-
Elementary Radio
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators

City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.
I.C.S. seudenss for Examination are coached till successful.

To the exclusive range of sound equipment produced by B.S.R. is now added the D.R. 33 Direct Disc Recorder.
Dise Recorder.
The D.R. 33 incorporates the latest developments in recording technique and is the finest direct recording instrument available. It is supplied in an attractive carrying case and is completely portable. We should be pleased to send you further particulars of this latest production of the B.S.R. Research Laboratory.
Amplifiers, microphones, loudspeakers and accessories.

\section*{DIRECT DISC RECORDER}

BIRMINGHAM SOUND REPRODUCERS LTD. Claremont Works, Old Hill, Staffs. Phone Cradley Heath 6212/3. London Office: 115, Gower Street, W.C. 1. Phone Euston 7515.

\section*{Products of \\ Quality \& Reliability}
mains transformens
a. F. TRANSFORMERS

THERMAL DELAY SWITCHES
SMOOTHING CHOKES POWER RESISTANCES

Rate \(6 /=\) for 2 lines or less and \(3 /-\) for every additional line or part thereot, average lines \(5-6\) words. Box
Numbers 2 words plus \(1 /=\). Press Day: March 1948 issue Numbers 2 words plus \(1 /-\) Press Day: March 1948 issue,
Girst post Friday, February 6 th. No responsibility accepted for errors.

\section*{WARTMING}

Readers are warned that Goverrment surplus compenerits which may te cffercd fir sale througn our columins carry no man.uracturer's gucrantee. Many of these components will have been designed for special purposes making them unsuitable for civilion use, or may have de. teriorated os a result of the canditions under which they hove teen sticed. We connot undertake to deal with any complaints regarding

NEW RECEIVERS AND AMPLIFIERS
 lions permit.-Degallier's, Ltd., BCM/DEG. 9 RECEIVER type \(\underset{\text { R.317-jamhing }}{\text { Revices, radar, used for }}\) ineasure; contains 14 modern a.c. valves, in ruding 8 Urice \(50 /\) each, plus \(4 /\) carriage.

Seven
8965 BIRIERLEY ribbon and armature pick-ups, Arrangements are being nade for the demonstration of these products by agents throughout the British isles. Where arrangements for this for our sales representative to demonstrasible vour own home when next in your district. T. H. Brierley, Ltd., 46, Tithebarn St., Liver1048 Super de luxe five-waveband feeder magic eye, \(15 \mathrm{in} \times 5 \%\) in station-named scale, 10 \(17,16 / 35,34 / 100,200 / 550,800 / 2,000\) metres communication type coil pack, high "Q". I.F transformers, completely assembled and aligned and ready to connect to audio amplifier.-Send \(21 / 2 d\) stamp for full details to the sole distri butors, Coulphone Radio, 58, Derby St., OrnasW.W. Quality amplifier, built strictly to trol stage; pre-amplifiers, including hi-fi and chokes for this amplifier wound to w w specification; 12 valve, 20 watt, 4 -channel spectronle mixing; ac/dc amplifier and other ac and ac/dc types; \(21 / 2 \mathrm{~d}\) stamp for particu ac and ac/dc types; \(2 / 1 \mathrm{~d}\) stamp for particu C. J. R. Electrical \& Electronic Development Lid. Hibert St, Brham, 6. Aston Cross 2440 CONNOISSEUR'S Ieceiver. Combination T.R.I \(\mathrm{I}^{10-v a l \text { quality set. Fully converted R1155. }}\) switched super-het or FiR.F., \(9-1,500\) R1155 switched super-het or T.R.F., 9-1,500 metres with PX4 push-pull quality amplifier. Bass input and other refinements, £35. Makes gram radiogram. Write for full details or call for radiogram. Write for full details or call for demonstration. We can modify your R1155
similarly or to your requirements. R1155 cirsimilarly or to your requirements. R1155 cir cuit and values, \(2 /\) post tree. Repairs, etc. to all communication and quakty receivers. K.T.S. Ltd., 8, Gladstone Rd., Wimb.edon,
S.W.19. Liberty 3303 . (YOODSELL, Ltd., 40, Gardner St., Brighton. T The Wilijamson amplifier to W.W specification fitted with best quality compon ents, Partridge transformers and oil con densers on 425 -volt line, price \(£ 21\); with voltage stabilised power pack (valve controlled) ensuring no volts in excess of 350 for the preamp and complete stability where high gain required, super amplifier 26gns; pre-amp in cluding E.F. 377 with 4 position bass boost and 4 position treble control and E,F. 37 as straight triode for Hi-Fi pick-ups, for use with above, 24/6/6. Complete new range of feeder units using new Denco 5-, and 10 -band turrets, im proved I.F.T.'s and large attractive glass dials with magic eye, available shortly; send for details.
(9169 CHARLES AMPLIFIERS.-Announcing a fier-the HFAS incorporating a pre-amplifier to enate the use of moving are-amplifer to enable the use of moving coil pick-ups direct; this amplifier in conjunction with the Lexington moving coil pick-up and the B.A.E.C. twin cone speaker provide the highest obtainable fidelity of reproduction; the complete range now comprises amplifier HFA1 7 wath cathode follower output for crystal pick-ups; HFA2 single-ended 3 watt for crystal pick-up; the LIF \& 3 for moving coil pick-ups; full construotional blueprints, \(2 / 6\) each; full kits or separate components available or supplied ready assembled; stamp for comprehensive catalogue.-Charles Amplifiers, 1e, Palace Gate, Kensington. W.8.

HAMBANDER
communications receiver 1 covering the amateur bands from \(10-160\) metres, 6 octal valves, crystal diode noise limiter, hlo, separate bandspread dial, send, receive switch, built-in power pack for ac operation, £22/10; Radiovision preselector covering \(9-90\) metres, 2 EF50 high gain stages with regeneration, calibrated iluminated dial, built-in power pack for ac operation, \(£ 13 / 13\). less valves; export enquiries invited; illustrated brochure from
RADIOVISION (LEICES'IER), Ltd., \(58-60\), Rutland St., Leicester. [9103 - PECIAL offer: Midget communication re* valve superhet, complete with aerial and earth equipment. lightweight headphones: range 20-3,000 metres in four bands, operates on any voltage between 97 and 250 A.C. or D.C.; \(59 / 10\); send for one now before stocks are exhausted; another special offer, s.0w ea, postage 6d; also milliameters, 0-1, 15/. ea; send for 6-page list; trade supplied.-L. Wil rinson, Wholesalers, 204, Lower Addiscombe Kd. Croydon. Ald. \(2027 . \quad[8264\) GNIVERSAL ELECTRONIC PRODUC'TS, Tel No wel 4058 Our If 7 amplifer is lesigned for the connoisseur who requires the best possible reproduction together with the highest standards of workmanship and materials. Write for descriptive leaflet. We
invite you to hear this amplifier demonstrated in conjunction with the Wilkins \& Wright pickup and latest type speakers, including the new Whar edale Corner Cabize moded specialize in high-filelity sound reproduction for the lome, clubs, concert halls, etc., and will undertake the desigu and construction equipment to meet your own requirements.
RADIO TRADES MANUFAC'IURING CO. M (EALIVG), Ltd., 141, Idittle Ealing Lane, W. 5 (Ealing 6962), pioncers in the manufac. ture of the " Williamson" amplifier and now the basic circuit in G.E.C. book, are prodncing a super edition of this fimous amplifier which is without doubt the finest reproducer yet evolved. Lsing Partridge transformers and other parts throughout of the finest quality, built on heavy gauge chassis, there is no other amplifier offered at such a reasonable price amplifer offered at such a reasonable price, fier of new design giving perfect control of bass treble, \&10, complete. Kit of parts with bass treble, \(£ 10\), complete. Kit of parts hith f2. 12 in speakers and gram motors with pich d2. 121 speakers and gram motors with pick up also supplied. Full delails (stamp) from
r Mos. Ltas above. RECEIVERS, AMPLIFIERS SECOND-HAND
\(\mathbf{A}^{\mathbf{S}}\) nev Eddystone 504 receiver in
Condition; oters.-Box 4973.
\(\mathrm{R}^{\mathrm{C} . \mathrm{A} \text {. } 77 \mathrm{EE} \text {. Comm. Rx. } 31 \mathrm{mcc} .550 \mathrm{lcs} \text {, Xtal }}\)

 LLE, \(1155 A\), as new, fitted S . meter, noise
limiter, K'61, power pack ete. limiter, K'W61, power pack. etc.; 20 gns
[9018 15 N. TTT ampilier, Callaro turntable ind Le pickup, l2in Goodman's speaker in
cabinet: 225 lot.-Box 212 .
[7747 -VALVE mains chassis, long/nedium, per I fect, westinghouse rectifier H.'I'8, valyg S4VB: offers.-Box 4526 . \([8952\) TIGH quality A.C. Mains amplifiers, 4 watts - o.p., alruost new; s.a.e. ; f7.-Hairh, 108a, Nightingale Road, Carshalton, Surrey. [9034 IIOWARD 12 -valve comm. recr. guaranteed first offer over 220 secures.-Box 4461 . [885 CIVILIAN communications receiver, 45 (\(\mathrm{mc} / \mathrm{s}, 550 \mathrm{kc} / \mathrm{s}\), write for details; \(£ 15\) or oter,-Easterbrook, 302, Raeburn Av., Surbiton. 1WO Philips chassis \(6 \%\) A.O., \(110 /\) each £15: 72 plugs and sockets, offers.-Box 4509. C.R. 100 with 12 -incli Magnavox speaker, G. Rice, 2, Woodlands, N.W.11. Spe. 4915 \(T E L E V I S I O N\) console, Marconi 704 , over did hauled incons new power pack, splen did condition, f75.-Cook, 412. St. Richard \(\$ 3\)
[9107. Deal, Kent. H.R.O. Xral phasing, "S meter, power spare valves, phones, good condition; \(£ 55\) ar mearest-Box 5108. -OUND SALES-DX +1 Hi-Hi tuner, variable \(\begin{array}{rll}\text { selectivity: nearly new, \&12; } & \text { S.S. } 14 \mathrm{AW} \\ \text { amplifier. \&18; perfect. Myatt, } 50, & \text { Ribblet }\end{array}\) ST S 16 \$troatham 0751. [89.79 WIRELESS WORLD "' 2 R.F. quality quality amplifier new. £5/10. less valves which are easily obtainable.-Box 4506. [8915 TWELEVISION set, experimenter sealing own complete receiver, 12 in electrostatic tube: strated by appointment; \(£ 45\) cash.-Davies. 32. Clovelly Av., N.W.9.
[903]

\section*{THIS USEFUL \\ NEW FOLDER -}
range of Henley SOLON Electric Soldering Irons, for the standard voltage ranges of \(200 / 220\) and \(230 / 250: 65\) watt and 125 watt models fitted with ovaltapered bits or pencil bits and 240 wati models fitted with oval-tapered bits are available
Write Today for the new folder ref. Y. 10

W. T. HENLEY'S

TELEGRAPH WORKS CO. LTD.

\author{
(Engineering Dept.)
}

Y(1)U
cani become
a first-class RADID ENGINEER

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

\section*{T. \& C. RADIO COLLEGE}

North Road, Parkstone, Dorset
\({ }_{1}\) Post in unsealed envelope, ia. stamp)
Please send me free details of your HomeStudy Mathematics and Radio courses.

NAME
ADDRES

\section*{w.w. 68}

SCOTT Phantom. 2 chyomed chassis, speaker, watts, sep. bass and treble controls, perfect condition; ofiers over £35.-Box 4773.] [8997 H. R.U. Kx, with s-meter, Atal, 6 coils, 480 speaker and power pack, excellent mecnanical and electrical cond.; ofters over \(£ 38\).-Box 4518 (HAlLLES Hr゙3 high gann amplifier. Lexingley ribhou pickeps \(W\) \& \(W\) ecratch, filter B.A.E.C. 12 in speaker, used expermmentaliy only; f30--180x 4969 . \({ }^{[9026}\) W.W.Q.A. 12 W. (ntw), W.W.Q.A. super revalves, Hartley 'Turaer 12 in eng. speaker; reasonable ofter accepted-Hopkinson. 44, St. WiRELESS WORLD" quality amplifier simpsons ac motor and crystal pick-up on plywood playing board, \(£ 28\) complete outfit.-H. King, Clacton Rd., Nt. Osyth, Essex. [9043 R ECEIVER, BC34BN, A.U., extras, spares, 20,000 o.p.v.; valve tester (American), 35 valves, \(T x\) and \(R x\), all perfect; exchange Leica, Contax; or offers, singly or lot; details, 8.a.e.-Box 4523.
[8945
ver by
7. VALVE Service communications recelver by 2,000 Pye, new, unused, in original packing, 16 power pack; price includes phones, aerial, insulators, spare bulbs and fuses.-Thrupp, 5 ,
EIdon Grove, London N.W.
 A. containing 9 moving coil meters, lgranie transformers, etc., also 4 Epoch 18 in cinema speakers (some cones damaged), collection of valves LS6A, PP 25/500; seen Clacton.-Offers whole or items to Box 4977 . capacity \([9049\) T ture amplifiers with three tested 1 T4 midget valves, 20/. each, post free; in aluminium case, \(22 /-\) spare 1 T4 valves, guaranteed, \(6 /\) - each; holders, 6 d each.-Littler, 24 , Stanley Rd. Whalley Range, Manchester, 16. \(A^{\text {MERICAN B.C. }}\) tions receiver, \(1.5-18 \mathrm{in} / \mathrm{cs}\) in 6 switched bands, B.F.O. and crystal phasing 110 -volt a.c., in excellent condition, with wiring daagram; £20 or near ofier; transiormer, \({ }^{\text {volts a.e., zvailable.-Apply Mr. Stanton, } 1394 .}\) volts a.c., \({ }^{\text {available.-Apply Mr Millanton, }}\), Whetstone, N. 20 . Hillside 2488. High Rd., Whetstone, N.20. Hillside 2488.
-750 watt A.C. amplier (K.T. \(33 c^{\prime}\) 's \(25^{150}\) watt A.C. amplier (K.T. 33 mes in put choice of 6 tone pitches, stand-by switch, matchmaker output transformer, etc., 2 mics and stands. two 15 watt P.A. speakers, com-
plete with all leads and spare set of valves, plete with all leads and spare set of valves,
£60.-12, Martland Court, Friern Barnet, N. 11 . Enterprise 1807.
[9070 NATIONAL NC81X receiver, 10 tubes, Xtal i filter, \(S\) meter. \(10-160\) bands, 230 v A.C., £30 or best offer; Canadian R103 short-wave 6v. Car radio, as new, \(£ 15\) or best offer;
A.P.W. 8345 receivers, suitable television, complete as new with 6-EF50s, 3 diodes, \(£ 5\); as above, but damaged, valves O.K., f2.Sukes. Oldfield Rd., Honley. Huddersfeld.
 sets have been stored in the open for a time and case and chassis are more or less rusty, but the components outlined below are mainly in good usable condition: 4 slug tuned air speed coils about 3 meters, and tuning condenser, 2 l.f. chokes. mains trans (2,000 es), h.v. metal rectifier and approx 150 res and cons. In addition to the sbove items, there are switches, VCs, sockets, etc., which may, be damaged or faulty. If crate is required. send \(£ 1\) deposit, returnable; send stamped H Hutton, Essex. [9045

INs'rnuments
MOST makes in stock, some on terms.-Write for details and list of radio and electrical spares, new and ex-Govt., to The Instrument Co. 244, Harrow Rd., London, W. 2
C. \&50.-Box 4515 . \(W_{\text {EE megger, } 250}\) volts, new condition, ap TAYLOR Model 90 universal meter: \(£ 12\).

Q meter, surplus to requirements, as new (2) mersby, Mill inane, Margate. Siemens halsk, \(B_{1 / 50}^{\text {RID }} 50 \mathrm{k}\) ohms, precision job, bargain, f6/10.-51. Fairway, staflord. [9041 SIGNAL Eenerator, Type E, Model 1, new, land cost \(\mathfrak{f} 20\), sell \(\mathfrak{f} 15\).-Moore, Northumberland Avenue, Berwick-on-Tweed. 79046 A VO model 40 , Westonmeter \(785(20,000\) A. OPV), Mullard RC bridge, as new.- Ball,
27. Hillsborough Rd.. Garrowhill.
[9014

\section*{LASKY'S RADIO \\ EVERYTHING FOR THE AMATEUR AND SERVICEMAN}

Condensers. \(2 \mathrm{mid} .350 \mathrm{v} . \mathrm{w}_{0} 1 / 11\) each. 4 mfd . 425 v.w. 3 - each. \({ }^{2}\) m. 4.0 each. \(8 \mathrm{mid} .450 v . W .4 /-\) each. 8 mid . \(450 \mathrm{~V} . \mathrm{T}^{2}\). Drilific) \(4 /\) each. 16 mufd. 350 v.w. \(4 / 6\) each 16 mid . \(4 \overline{50} \mathrm{v} . \mathrm{w}\). (can type) 48 emich. is mid. \(\mathrm{r} . \mathrm{w} .5 / 6\) each. \(8 \times 8 \mathrm{mfd} .500 \mathrm{v}\).w. (midicet cant 59 each. \(8 \times 8 \mathrm{mml}\). 50 v v.w. (eardhoard block) 5,9 each. \(8 \times 16\) mifd. (cun type) 86 each. \(8 \times 16\) mif. 500 v.w. (cardbr ard block) \(8 / 6\) each. T.C.C. Cuthoderay 1 mfd. \(60 \mathrm{M} \mid \mathrm{r}\) w. 15/- each.
750 v.w. (block oil filled) \(7 / 6\) each.
All valuea small condeneers from 5 pf. to .5 nid. \(350-500 \%\).w. 7 ld ench.
1 Large stock of biak conilensers \(50 \times 50,30 \times 12\), \(75 \times 12,20 \times 12,25 \times 25\), etc

 \(2 \% / 6: 12 \mathrm{in}\). speakers, prices on application. M.E. Speakers. Kin. Rola 1000 ohm. field with Pen Velestion 2000 obm fleld \(\mathrm{w} / \mathrm{T}, 35 / \mathrm{T} ; 123 / \mathrm{la}\). Rola 150 obm field with t Pen Trans., 366.
Tuning Condensera. 2 gang .000 s \(10 / 6\) each; complete with elow motion drive, \(13 / 6\) each.
I. F . Transiormers, 4 CJ K Cs . Higb \(Q\) with or without fly lead, atr or iron cored, 7/6 cach, 14/- pair.
Wearite "p" Coils. All types in stock, AE, H.F Оис., etc., \(3 /-\) ench
Connecting Wire. \(1 / 8\) dor. yds. Systoflex, Tinned Copper Wire, 18, \(18,20,22\) Galıe.
Valves. A few examples from nur extenaive stocks. All at B.O.T. priger, DF91, DK91, HL92, DAF91, 1116, UBL21, UY21. ECH21, VCH21, KT66. PM24M,

 \(19 \mathrm{K7}\) 6K7 6K8 6V6 42 657, Let us know your requirements.
We also have a large stock of mains transformers chokes, \(0 /\) /rans., coil packs, pick ups, etc., etc.
All our goods carry our onconditional guarantee. our current list
HASMMMSRADO
370, Harrow Road, Paddington, W. 9 Phome CUNningham \(18 \%\)
Hours : Mon. to Sat. \(9.30 \mathrm{a} . \mathrm{m}\). to \(6 \mathrm{p} . \mathrm{m}\). Thurs. half da.y

\section*{COULPHONE RADIO}

The Returu of Post Matl Order Service 58 DERBY STREET, ORMSKIRK, LANCS. Phone : Crmskirk 496. Grams : Conphonne, Ormskirk. NEW GOODS ONLY.
C.W.O or C.O.D. Post Free over 5

PRIMARIES for 200/30/50 volta. Universal 4,5 and 6.33 v . I. T. 300.300 .300 v. 00 ma. \(23 / 6\). \(350 \cdot 0-\) 350 \%. \(100 \mathrm{~mA}, 28 / 6: 400 \cdot 0.400,200 \mathrm{~mA}\). \(450{ }^{\circ} \mathrm{v} 200 \mathrm{~mA}, 6.3\) v. 4 B. C.T. 8.3 v. 4 a . C.T.,
 \(1,250-1,000-750-01,000-1,250 \quad \mathbf{v} .000 \mathrm{~mA}\) (no
 Auto (Filament), 4 r . to 6.3 v . fa (or vice vergh), \(13 / 6\).

SMOOTHING CHOSES
valves
\(\begin{array}{ll}\text { 15 H. } 40 \mathrm{~mA} .360 \text { ohm., } 5 /- \\ 20 \mathrm{H.} & 60 \mathrm{~mA} .425 \mathrm{ohm} ., 6 / 6 . \\ \text { BVA and } \\ \text { TUNGSRAM }\end{array}\) \(15 \mathrm{H} .90 \mathrm{~mA} .240 \mathrm{ohm} ., 7\) - -2 SENT C.O.D. \({ }^{2} 0 \mathrm{H} .100 \mathrm{~mA} .425 \mathrm{ohm}\)., \(13 / 6\). 20 H .200 mA .150 ohn., \(22 / 6\). 30 H .200 mA .35 n ohm., 25/-.

> OUTPOT TRANSFORMERS Pen. \(5 / 6\). Std. Univ. wit

Midget Power Pen., 5/8. Std. Univ., with C.T., \%/6.
Large Univs., with C.T., 12/6. Heavy Duty Univ., for 3,8 and \(15 \Omega, 22,6\). Exira Heavy Duty, \(37 / 6\). SPECIAL (to suthor's specification), for quality armplifler, described in, April and May issues of The Wirelesm World," \(67 / 6\).
WEYMOUTH TRF, COILS. MACE, ete.
. 0 . SUPERHET 3 W.B.. with cet., \(465 \mathrm{ke} / \mathrm{s}\)., patr \(11 / 6\). WEYMOUTH COIL PACKS. Completely aligned, 36/6. SUPER FEEDER UNTT. 5 wave haut. R.F. stage Magir Fye. Complete with 5 valves, \(£ 18\) 183. I.F. TRANSF. Mddyet, \(18 / 9\) pr. Standard, \(17 / 6 \mathrm{pr}\). 11/6; W/Tr., 12/6. 3-gang L/Tr., 15/6.
KITS. ; iv. Batt. S/H.
MUIRHEAD PRECISION REDUCTION DRIVES.
54:1,12/6. J.B., Full Vision, 8: 1, 12/6.
SUNDRIES
LINE CORD. 3 amp . \(60 \Omega\) per ft., 2 w., \(2 / 3 \mathrm{yd}\).; MAINS DROPPERS. 3 a. \&od \(\Omega, 4 / 6: 2\) a, \(1.000 \Omega\), \(4 / 3\). CARBON RESISTORS (\(00 \Omega\) to \(s \mathrm{M} \Omega\)), \& w.

EDDYSTONE SHORT WAVE GEAR.
ROMAC SUPER CAR RADIO. YIDOR PORTABLES.
Send 2td. stamp for new 24 -rage Catalogue.

PROGRESS instruments, modulated signal generator, \(100 \mathrm{kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{s} ; 7 \mathrm{gns}\); s.a.e. B.P.L. sig. gen., new, model R. S. 600,1100 man, 9 . Fordon St. Ayr. Scotland. 18950 \(2^{-3}\) range universal meter with cabinet and nearesi.- 162 , Dudley Rd., Granthan. A VO 7 neter, \(f 18\) : mains oscillator, \({ }^{\text {[812 }}\) \begin{tabular}{l}
valve tester, fl5; all new; offer tor lot.- \\
Chipstead Valley Rd., Coulsdon. \\
\hline 10006
\end{tabular} \(\mathbf{M}^{\text {ETERSS, o-1 }}\) ma fush, square, 2 in, new, ex- \(18 / 6\) c. 230, Chellaston Rd., Shelton Lock, Derby 2 in thermocouple moving coil milliammeters. \(0.350 \mathrm{~m} / \mathrm{a}\), new ex-Gov.; a bargain at \(5 / 6\) each, f3 per doz \({ }_{\text {. }}^{\text {post }}\) free. \(\mathbf{F}^{\circ} \mathrm{OR}\) sale, Marconi Be.F. 0 . \((0-40 \mathrm{kc} / \mathrm{s})\) Muirriable attenuator (0 -minus 105 db .), Marconi Fkco distortion meter.- \(\mathbf{H o x} 4965\). \([9020\) \(1000^{-0}\) meters, 2 in fush mounting, packed sep., 5/- ea (min. 1 doz).-Stanwell \& Leather\(\mathrm{F}^{\text {REQUENCY }}\) meter BC. 221 .-Crystal con trol \(126 \mathrm{kc} / \mathrm{s}\) to \(20 \mathrm{mc} / \mathrm{s}\); accuracy better than \(0.01 \%\); new \(£ 45 ; 45\)-page manuals giving ircuit and full details \(7 / 6\).-V.E.S., 46 , Wind mill Hill, Ruislip Manor, Middlesex.
DICRO anmperes.-Model 505, D.C. Turner Electrical Instruments. F.S.D., 100-0-100, moving coil, zero set serew, dead beat, \(21 / 4 \mathrm{~m}\) dial, \(31 / 4 \mathrm{in}\) diamoter, moulded bakelite case, Govt. surplus, new, in original cartons, 1 st AMMETETRS.-Rang
eads and shunt \(0-100\), moving coil with 31/2in thush fitting, bakelite case, zero set screw, lead beat. Govt surplus, new, in original car tons 1 st grade; \(25 /--\) Below
VOLT meters. Range \(0-120\)
Victoria Instrument \(0-120\), moving coil, by Victoria Instrument Co., \(31 / 2\) in flush fitting bakelite case, zero set screw, dead beat, Govt. surplus, new, in original cartons, 1 st grade; 22/6.-Below
TEDDINGTON FNGINEERING Co., High St., Teddineton. Middx. Kin. \(1193-4\). \({ }^{2}\) Tracette"! \({ }^{[8583}\) pocket signal tracer, self contained with high output, to handle every type of signal; faults probe-traced on the spot in seconds; plans. details, layout, \(2 / 6\) from E. Bradley, Whinnie Knowe, Sennen. Cornwall: s.a.e. list.
\(\mathbf{O - 7}\) milliameters (FSD). moving coil, U- 1 boxed, \(15 /-;\) osciliators (battery), ac hit eliminators, 120 v output, 30 milliamps, \(21 /-;\) dipole aerials, \(2 /-\) all items new, plus postage, c. \(\mathrm{W} .0 .-\mathrm{Radio}\) Stores, 39-41-43, High
[8892 ERVICOMETER model 1212 , a new preci-
sion instrument employing five valves meter indication designed for speedy location of faults, measurement of tuning coil inducance, measurement capacitance, checking effiiency, aerial earth instaltations, frequency measurement 100 kes to \(20 \mathrm{mes}, 12\) months guarantee; price £:4/17/6.-Radio Develop-
[8876
 1 ments. unused, consisting thermostatic ally controlled crystal oven. 9 valves, including crystal and heterodyne oscillators mixer and leadbeat stages, frequency \(15 \cdot 2,500 \mathrm{kc} / \mathrm{s}, 230 \mathrm{v}\), 0 cycle, weight 112 lb , with crystal, valves, and meter, \(£ 16\); as above, but frequency \(1.000 \mathrm{kc} / \mathrm{s} 30 \mathrm{mc} / \mathrm{s}\). £30, carriage extra. -120,
Wyclisil Rd. Northfid. Birmingham. NEW LOUDSPEAKERS
© \(/ 10\). New Baker super quality 12 in cone, manufactured by Baker's Selhurst Radio, the pioneer manufacturers of moving coil speakers since 1925, wide frequency range, itted with magnet having an exceptionally high flux density in the air gap, a speaker high flux density in
£5/18/6.-New Baker model 12.C single-cone 12 in p.m. speakers, built on the lines of the anditorium model, suitable for public ad dress equipment, acoustical output being very receiver. £8/19/6.-New Baker super power cinema p.m. speakers with \(18 i n\) tripie cone giving wide requency response free rom objectiona music is reproduced with exceptional realism, music is reprocluced with exceptional realism, realistic reproduction is required; send \(21 / 2 \mathrm{~d}\) stamp for leaflet giving details of above; also ampinfiers and constructional details of new speaker frequency range; prompt delivery per speaker rrequen
BAKER'S Selhurst Radio, 75, Sussex Rd. BAKER'S Selhurst Radio, 75, Sussex Rd.
South Croydon. T'el Cro. 4226 .

\section*{STILL MORE BARGAINS}

\section*{Selected from our wide range.}

RELAYS. Siemen's High Speed lab., relays in brass case on ebonite circular base with contacts, 63 each. G.P.O. Polarized relays fitted contacts, in brass case with glass top and terminals, 45/Few relays with coils in good condition but less contacts, and soiled, 20
GALVOS. D.C. moving cail suspensian mirror Galvo, reflection type of Tinsley 100 ohms sensitivity \(2 \frac{1}{3}\) micro. amps per 1 inch of scale at one metre, in polished case with glass front, 68 lOs. Moving coil bridge Galvo, flush panel, \(2 \frac{1}{2} \mathrm{in}\), scale \(25-0-25\), new, \(75 \%\). Sub-divided Ohm Boxes by eading makers, \(05, .05,1, .2,4,2,1,2,2,4,10\), \(10,10,40,20,20\), with plugs, \(40 /\)
MEGGER. Evershed bridge megger decade resistance box S.H, guaranteed. Evershed Wee meggers, new, from stock.
RESISTANCES. Var. slide vit. enamelled ube with laminated brush and slides, 14 ohms 5 amps., suitable nith 50/70 volt dynamo for Marging circuits at 5 amps., \(25 /-\) each. As new.
METERS. Ironclad A.C. voltmeters, G.E.C. 4 in , switchboard, 0.60 volts, 45/-. Ammeters to match, \(0-40\) amps., 45/-. Frequency meter 50 volts \(6 \frac{1}{2} \mathrm{in}\). \(\times 6 \frac{1}{2} \mathrm{in}\). \(\times 4 \mathrm{in}\). with lamp on top to illuminate dial, \(\mathbf{E 5} 5 \mathbf{5}\). ; transformer for 230 volts A.C. 35/- extra. Ammeter to match, 0-50 amps., A.C., \(75 /\). Voltmeter to match, 0-75 volts A.C., 65/-. D.C. moving coil, Elliott voltmeter, 3 in., panel with back connection, 130/260
TRANSFORMERS. Auto type, \(230 / 110 \mathrm{v}\). 85 watts \(25 /-, 100\) watts \(30 /-, 150\) watts \(35 /-, 350\) watts \(65 /-.1\) K.W., 47 10s. Double wound \(\begin{array}{llllll}\text { transformers } & 230 v / 20 v . & 2 \text { amps. } & 30 /-, & \eta 2 v . & 3 \\ \text { amps. } & 32 / 6 . & \text { B.T.H. Transformer, } & 200 / 230 / 250 v .,\end{array}\) amps. \(32 / 6\). \(\mathbf{B . T . H . ~ T r a n s f o r m e r , ~} 20 \mathrm{cy}\). input 2 volts 20 amps and 75 volts 6 amps .
50 output with 15 taps, 70/. Carriage paid England and Wales.
DYNAMOS. D.C. 12 volts 10 amp . C.A.V., new condition: shunt wound, carbon brushes, E4. 50/70 volt D.C. 10 amps., shunt wound, ball bearings 1,000 r.p.m., \(614 ; 30\) volts 5 amp., 65 ; 24 volts 40 amps. E 10 .
24 volts 40 amps. ClO .
Dewar key panel type,
7-pole C.O. flush
fitting, \(5 /-\). Yaxley 3
pole 3-way, \(3 / 6\); 8

D.P.C.O. toggle switch 250 v . I amp., flush panel,

3/3; 8-way Lucas switchbox, 3/6; 6-way, 3/-.
enclosed type, \(21 / . .24\) volt D.C. Solenoids ift 14 lbs., \(15 /-\).
SPARK COILS
SPARK COILS. G.P.O., \(\frac{1}{2}\) in. to lin. coil, 6/12 volt operation, \(25 /-\); large 4 in . coil on polished 12 10s. Mercury condition, heavy contacts 12 10s. Mercury Interrupter, 110 volts D.C C2 15 s.
SPEED
SPEED METERS. By A.T. Speedometer Co. 1,500 r.p.m., 4in. dia., black dial, white figures and BATTERY SUPERSEDER.
input 230 volts input 230 volts \(40 \mathrm{m.a}\). D.C. output, for Radio model finish, 55/-
TELEPHONES. Wall type constructors' parts ex-G.P.O., comprising cabinet \(8 \mathrm{in} . \times 6 \mathrm{in} . \times 3 \mathrm{in}\). bracket mike, transformer and condenser, mag. bell, switch-hook and contacts, hand mag., ringer P.O. type receiver terminals and connection diagram, 35/- per pair
MOTORS. D.C. \(1 / 12\) th h.p., 110 volts, shunt wound, \(25 /\)-. A few similar machines, 110 v . or 220v, needing repair, 12/6, carriage \(1 / 6\).
BATTERY CHARGERS. 230 volts A.C. for 6 or 12 volts car accumulators. Send us your condition while not in use.
MAGNETS. D.C. Electric magnets, weight 10 oz., lift on 2 volts \(1 \$ 1 \mathrm{~b} ., 4\) volts \(3 \mathrm{lb} ., 6\) volts 4lb., new, surplus, \(7 / 6\) each.' Permanent powerful flat bar magnets, \(2 \mathrm{i} \mathrm{in} . \times \operatorname{lin} . \times 1 / 8 \mathrm{in}\)., drilled 2 holes each end, and any pole pieces, \(2 /\)-pair. The \(5 / 8 \mathrm{in}\). diam., \(3 / 8 \mathrm{in}\). thick, with \(3 / 16 \mathrm{in}\). centre hole 3/6 each. Large stock of Horseshoe magnets Send for special Magnet Leaflet, " W.W."

ELECTRADIX RADIOS
214, Queenstown Road, London, S.W. 8

\(\mathrm{S}^{\mathrm{H}}\)E and hear the Wharfedale carner cabinet

HGH quality, precision-built speakers, Ticonal magnets detachable hrag diecast chasss, \(t\) win cone.-Broad cast House, Tombland. Norwich 26970. [6435 LOUDSPEAKERS. SECOND.HAND

VoIGT H.C. corner horn with bass chamber HARTLEY TURNER 215, latest model. VOIGT light twin unit with B.B.C. correc. tor filter. \(100 / 200 \mathrm{v}\) field; B.B.C. correc. 2, Rectory Gdns. Northolt. Middx. [9106 HARTLEYTURNER energised, with rectiKirk. 100 , Lakeuheath, N. 14.
GOODMANS infinite baffe, perfect, £12; Marshall, 5, Isis Court, Chiswick, W.4. 9010 VOIGT light coil twin unit; H.C. corner init; perfect, demonstration, £40.-Box 4970. VOIGT iight twin cone unit in H.C. corner horn, bass chamber and field supply Cleethorpes. or ofier. -51 , Manchester
[9067 VOIGT domestic corner reflector speaker, condition; offers over \(£ 40 .-32\), Kenning [9121 \(\boldsymbol{B A K E R}_{\text {magnet triple cone speaker }}\) permanent et, 15 ohms, complete with infinite baffe ARDENTE Regal sound \(56 / 10\).-Box 4505. A RDENTE Regal sound system, sperially A. 318A amplifier of \(15 w\) output, 3 type TC/FS moving coil microphones with loling \(12 \mathrm{in}_{1}\) type 524 4-channel mixer, 1 cabin type trunk cables and connetions, si cabin type just checked by makers and in \(100 \%\) condi. on; present day replacement value £165; offered for quick sale at £95.-Apply for appointment to view. Challen, Omega Works, Hermitage Rd., Finstury Pk., N.4. Sta. 2288.

\section*{MORSE EQUIPMENT}

MORSE practice equipment for classroom or an bual tuition; keys, audio oscjllators Radio, 14 Soho St. Wain Gep 2089 - 2291 DYNAMOS, MOTORS, ETC.
LL types of rotary converters, electric motors, battery chargers. petrol-electric generator sets, etc., rotary transformers, input each nett. post paid; J.A.P. No. 2 A engines, 1.2 b.h.p. at 2,600 r.p.m.. complete and ready for use, \(£ 17\) nett, ex works.-Ward. Lordscroft Works, Haverhill. Suffolk. Haverhili 253/4.
TARGEST and most comprehensive range in country, British and bA, th at Board of Trade prices, send available). free, s.a.e.; valves sent o.d.; reailers not supplied.
GRAMOPHONE AND SOUNO EQUIPMENT GRAMOPHONE AND SOUND EQUIPMENT
GIMON SOUND SERVICE have recorders SIMON SOUND SERVICE have recorders
[8713 WILKINS \& WRIGHT coil picknp, as new
[8932
and perfect. - Box 4516 . CoIL pickup, Wilkins \& Wright; 25 , unused. \(\mathbf{W}^{1 R E}\). Whitehall Gdns., Chingford, E.4. [8937 ORIER perfect; offers over \&75.-Box. wipe\(B^{\text {RIERLEY armature pickup. sap }} 5020\). new, perfect, £4/10-201. Plum Lane, S.E. 18 . M ARCONI model 239 radiogram, little \&7/10-Hunt, 169 . Pettits Lane, Romford. TRANSFORMERS, tone rontrol and filter chokes, for all "W.W." circuits.-R. cerk, Jo. Langland Crescent, Stanmore PREMIER transformer Super M.C. microphone with recording tracker 10 , horpe Grange, Brant Broughton, Lincoln. VOIG'T loudspeaker unit and mahogany ectifier unlt and Voigt pirkade, also feld former and corrector; offers for the lot or separately, can be seen working.-Box 4972 . PICK-UPS.-Lexington Senior with screened £s/10. Acos crystal with sapphire stylus, ect. 5 , 2 . Also Avo Universal Minor, per B TITISH SOUND RECORDING ASSOCIA. sonal and amateur recording engineer and quality reproduction enthusiast; \({ }^{\text {Sound }} \mathrm{Re}\) cording," the official journal, Vol. 3, No. 1, membership application form from, Hon. Mem. bership Sec., H. J. King, 48, Mount View Rd.,

\section*{NEW G.P. 12} CRYSTAL. PICK-UP with permanent sapphire stylus -was fully described in The Wireless World"s recent article "Crystal Pickups - Basis of Design for Fidelity Reproduction."
This remarkable pick-up, which represents the ultimate in high-fidelity reproduction, is now available in limited quantities through your radio dealer, price 96/- incl. P.T

FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

TO COSMOCORD \(\overline{\text { LTD }}\). ENFIELD, MIDDX
Please send folder of ACOS Pick-ups.
NAME
| ADDRESS

\section*{opporivilites mano}

Get this FREE Book!
"ENGINEERING OPPORTUNITIES"
reveals how you can become technically-qualified at home for a highlypaid key-appointment in the vast Radio and Television Industry. In 108 pages of intensely interesting matter, it includes full details of our up-to che-minute home study courses in all branches of RADIO and TELEVISION, A.M. Brit. I.R.E, A.M.J.E.E., City \& Guilds, Special Television, Servicing, Sound Film Projection, Short Wave, High Frequency, and General Wireless Courses.
We Definitely Guarantee
"NO PASS-NO FEE"
If you're carning less than 610 a week, this enlightening book is for you. Write for your copy today. It will be sent FREE and without

\section*{bligation.}

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 17/19. Stratford Place, London, W.I.

I NFINITE Baffle corner deflectors, scienti iewed Wireless World io June; send for vetalogue.-Broadcast 4 . Acoustle Equipment Co.. Ltd. Broadcast House, Tombland. NorWich 26970 .
wroadcast House, Combland. Nor-
[6434 ReCORDING equipment and accessories, units, a complete recording equipment for E75; secd 3d in stamps for descriptive cata logue to University Recording Co., 113, Milton Rd. Cambridge.
A MATEURS.-Your call sign recorded, time each slde, \(17 / 6\), male or lemate voire, high quality, long lasting: 5in sample rent iree.-Write your own scrips to D. Grafton, 53, Old Steine, Brighton.
CORRECTION. - Radio Unlimited, 16, Carnarvon Rd., Leyton, advertised price of Goodmang 12 in speakers should bave read Model T2/1205/15, \(\kappa 6 / 15\); Axion Twelve,
\(\& 5 / 8\); wo wish to apologise for any incon. venience caused by the mistake. [9016 DROFESSIONAL recording equipment; to P the trade, recording machines, blank dises, cutters, trailer needles, etc.. from stock; record ing amplifiers, matchłng transformers, rlbbon and m.c. microphones; full trade terms.-Sound
Dises (Supplies), Ltdi, 83 a , Bold St. Liverpool. LEXINGTON Junior pick-hip, as new. perfect. £3; 0.300 micro-ampmeter. R. 1 zero, \&3; \(1200-1200,300 \mathrm{~mm} / \mathrm{a}\), TX, TR, with 3 L.T. windings; 20 copies, electronics, radio, etc.: 1943-1946, offers.-ConRADIOGRAM motors, auto chaypers, play cabinets, speakers, accessories, microphones, etc.; rotational deliveries of the new silent drive motor and turntable; detsils on request: Dew lists available; s.a.e. please-Raclio UnR ADIOGRAMOPHONE units; including request: also radiogram chassis, cabincts, accessories also semi-midget radio cabi nets; varlous colours, moulded bakelite; Rola 1 oin speakers, \(30 /\); 4 -wave radiogram chassis. ع14. inc. tax; 3 -wave radio tuners. Radio Onlimited. 16, Carnarvon Rd. Leyton. Callers. 272. Romford Rd., Forest Gate. TECFNIFON, Ltd.. manufacturers of difect rrecision built traverse gear complete with first-class cutting head. we manufacture and specialise in sapphire stylii, our standard types fit the most popular pick-ups on the market and inc. a push-in model for light weight pick-ups; we manulacture specials in quantity to specification.-Technifon, Ifd. oa मalarave Rd. Lonilon, S.W. 1 . Vic. 881 a S.H.F.F.T. movine-coll pick-un is now avall. able for both home trade and export; it combines for the first time high fidelity with high output voltage. enabling it to directly replace normal moving iron pick-ups without any extra amplification: it has an exception ally clean response with no undesirahle reson ances. thereby reducing needle scratch. Price. in walnut and black plastic finish, \(40 /\) each retail, including transformer, plus \(10 / 4\) purchase tax: wholesale and retail enquities in vited: illustration sent on request.-Brooks \& Bohm. Itd.. 90. Victoria St., S.W. 1
CHARLFS AMPLIFIERS welcome lovers of where their high fidelity amplfiers can be heard together with Lexington Connoissent and Rothermel oick-ups and \(B\) and A.E.C and Rothermel Dick-ups and AEC acoustic chambers, infinite corner bame reffectors etc. we like you to bring bame deflechis your owntise devod entirety fidelity reproduction of music. one minute fidelity reproduction of music; one minute 8t. Station: buses 33 , 49 slop at the door Chstles Amplifiers, le palace Gate Kensing. Charles Amplifers

「6642
COMPONENTS SECONO.HAND, SURPLUS
D UBILIER paper conds.: metal cased, 6 mid, D \(1,000 \mathrm{v}\) wkg. 5/ ea.: H.R.O, coil-packs, \(50.100 \mathrm{kc} / \mathrm{s}, 100 \cdot 200 \mathrm{kc} / \mathrm{s}, 15 /\) ea,-Box 4968 .
GOUTH-WES' GOUTH-WESL Lcndon amateurs, for your - Denco stoskist, and all other construc tors' components, call at Servio Radio, 156, Merton Rd., Wimbledon. Tel. Liberty 6525.
YOU'LL probably get it at Smith's, Edg. or, from a 1 jiowatt resistor to a radiogram Cabinet; lowest prices, biggest variety.-Near Melropolitan Music Hall. Pad. 5891. [8005 SPECIAL offer! Complete range of compoO ments for constructing T.R.F superhet sets radio eabinets, ccil packs. amplifiers, etc.; at bargain prices; send for dotails.- Hands Radio Supplies, 103. Purnpike Itane, Horn-

*ithout sactificing accurncy and reliahility. Welghs oniy 3lbs. Helght allown for full awing of senerator thadte asarges up to 20 mekotims 500 volt

CONTINUITY TESTER This latent addition to the Recorl Obmmeter mango is enclosed in a moulded bakelite cana o pleasiug appearance. kiquipped with self-conLalaed dry battery. Apecially designed test aplikes also a "teat ne aupplied Aiso a teat and carry ment may be ueed with nent may be used with out removal. Ranges:-
\(0 / 3=0 / 30\) obms.
\(0 / 30-\) \(0 / 800\) ohms. 0/500\(0,60,000\) ohma \(011000-\) 0/200,000 ohms.
THE RECORD ELECTRICAL CO., LTD. droadheath, Altrincham, Cheshire. CONDON: 28, Viotoriz St. 8.W. 1 Phone. Atrinchan

These high-qualisy precision instrumenes 200 240 voles AC Type 5, \(100-250\) volts AC/DC Type 6, have a coverage of \(100 \mathrm{Kc} / \mathrm{se} 030 \mathrm{Mc} / \mathrm{s}\) in 5 ranges. Calibrated by hand against a standard frequency aceurate to \(0.01 \%\). Con structed in B.A. 60 alloy and finished black and cream.

Price 14 Gns. Type 5 or 6 Immediate delivery.

Mustrated leafless on application to

\section*{R.R.DEVELOPMEIT LABORATORIES LTO BRRПABD ROAD• RRADFORD}

THE "FLUXITE QUINS" AT WORK

> "We once used to rouse up like men
> When the kitchen clock buzzed ot seven ten,
> But this godget you see
> Fiied by FUXITE-and me
> Gets us up with a boom from Big Ben!"

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 40 years in Covernment works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, \(10 \mathrm{~d} ., 1 / 6 \& 3 /\).

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings \(A N D\) SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

The FLUXITE GUN puts

\section*{FLUXITE} where you want it by a simple pressure. Price \(1 / 6\), or filled, \(2 / 6\).
nitatuat in

\section*{FLUXITE}

IT SIMPLIFIES ALL SOLDERING
Write or Book on the ART OF "SOFT"
SOLDERING and for Leafiets on CASE-
HARDENING STEEL and TEMPERING
TOOLS with FLUXITE. Price 1d. each.
FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E.I

CLYDESDALE for ex-Services electronic
BRAND new half-wave dipole aerial with reflector and crossarm approx, 6 metres for wall bracket or mast mitg., dipole 9 ft 3 in, crossarm 4it \(111 / 2 \mathrm{in}\), refiector 9 it 710 with, carriage paid; brand new R1224 battery superhet receiver 5 valves, 3 wavebands, \(30-300\) metres complete less batteries at f5/14/6d, carriage paid; brand new R. 1481 Y.I.F. receiver with 10 valves and stabiliser, less power supply for \(65-86\) mes. at \(£ 9 / 14 / 6\), carriage paid; brank new Wheatstone Bridgetest set at C.R unit bariag paid; brand new AN-/APA-1 C.R. unit at \(97 / 6\); carriage paict, plus 1,000 's ol other items.-Send for illustrated list,
Clydesdale Supply Co., Ltd., 2, Bridge St., Glasgow, C.5. Tel. South 2706. \({ }^{2}\) [9081 A MATEUR has for sale quantity componA ents, some unusel, s.a.e, lists.-Axtell, 97,
Main St., Dreghorn, Ayrshire.
[9054 Main St, Dreghorn, Ayrshire.
B. \& I. RADIO for radio components, test ID gear and neters ; trade only: stamp for \(\begin{array}{lll}\text { list.-Huntley St., Darlington 2198, } & \text { [8974 } \\ \text { PARK RADIO OF NANOR PARK, } & 676-8,\end{array}\) 1 Romford Rd., E 12 . Tel. Ilford 2066 . we offer over and above everything radio:We ofer over and above ever-ening radio:batteries required. work marvellously over long distances; ideal for keeping in touch with the bedridden without running up and down Stairs; excellent also for intercommanication between shop and oftice, farm outliouses, etc.; outdoors, only one wire is necessary-use earth return; these also make fine underpillow extension speakers, play the kids to sleep, or listen
to the end without disturbing the wije, \(2 / 6\) to th
each.
each ANG condensers, escutcheons, transformers. T etc., to be sotd regardless of cost.-Send stamped addressed envelope for full particulars to Retail Sales, Ltu., 6, Chiltern Parade. Sycamore Rd. Amersham, Bucks.
TVELEVISION aerial equipment, 5 types fu:ly TELEVISION aerial equipment, 5 types fu:ly lashings, all types of feeder in stock; send for brochures; aerials installed.-Wolsey Television, Ltd.. 87, Brixton Hill, S.W. 2 . Tu'se Hill 1240. G6YA, Western Gateway Headquarters for \(G\) radio equipment and information. Radio components in stock for immediate delivery. L.F. Chokes, 250 ma , \(15 / 20 \mathrm{H}, 100\) or 200 ohms, \(10 / 6\) ea.; \(500 \mathrm{ma}, 15 / 20 \mathrm{H}, 80\) ohms (size \(61 / 2 \mathrm{in} \times\) \(61 / \operatorname{in} \times 41 / 2 i n), 35 /-\) ea.
VARLEY transformer, \(500-5.000\), 120 ma 4 y \(5 \mathrm{a}, 4 \mathrm{v} 4 \mathrm{a}, 4 \mathrm{v} 4 \mathrm{a}, 10 \mathrm{v} 1 \mathrm{a}, 30 /\) each.
ELECTROLYTJC condensers, \(8+8 \mathrm{mid}\), bleck can 450 v . 4 kg . (size \(21 / 2 \mathrm{in} \times 2 \mathrm{in} \times 11, \mathrm{in}\)), with fxing feet, \(5 / 6\) each. \(4+4\) med., \(3,000 \mathrm{v}\), whg oil filled (size 5 , in \(\times 7\) in \(\times 9\) in). \(25 /\). ea.
POTENTIOMETERS, wire wound, 10 watt rating, 1,000 to 50,000 ohms (long spindle), \(5 / 6\) ea.: short spinde with sloted sciows from our trol, \(2 / 6\) ea, Above are selve bring you winter extenslve range. cata.e, whighring showial offers. catalogue showing ninety-elght specta oiters. AlRTHUR H, RADFORD, G6YA, \({ }^{28}\), Bed-
minster Parale, Bristol. 3. Tel. 64314, [9040 \({ }^{2} 5,000\) Selenium rectifiers by S.T.C. and 1.5, Westinghouse, 5 types, \(30 \mathrm{ma.a}\) to 220 ma . 50 to 360 voits, all new tested stock, substantially discounted for quantities.-Apply for full technical data and prices. Partridge, Wilson \& Co.. Ltd., Davenset Electrical Works. Leicester,
COlPPER wires, enamelled, tinned, L8120, COPPER wires, enamelled, sill gauges; B.A. screws, nuts, washers, soldering tags, eyelets; ebonite and laminated bakelite panels, tubes, coi! formers; 'Tufnol rod; headphones, flexes, etc.; list s,a.e.; trade supplied.-l’ost Radio Supplies, 33 , Bourne Gardens. London, E.4,
GOVT, surplus components. meters and Or units, switches, pots, resistors, conds, screened flex, etc., meters from 500 microamps to 50 amps incl,, R.F. types; volt meters, etc., 40 varieties from \(2 / 6\) to \(30 /\) - each;
 25/-; 15 watt amplifers (12v), f8/10; ali carr, paid; s.a.e. for bargain list.-Hoyle, 320 , Dewsbury Rd. Wakefield. UNIVERSAL ELECTRONIC PRODUCTS, Tel. No. Vel. 4058. Precision-built gearbox dial drive units, giving 2 ratios, 8-1 and \(90-1\). Entirely free froni backlash. Few only. \(18 / 6\) post free. Send s.a.e. for particulars of our high-performance superhet tuning units. Special receiving or transmitting equipment constructed to specification. \([9145\) KITS of radio receivers from e7/8; 4. and I 5 -valve, new materials table models, semi-midget; our latest kit.-Wylwyn Star 1948 has connections for gramophone pick-up, exage time for constructing: full details. diagrams with each kit; c.w.o. or c.o.d.-Isher-

Armstrong

\section*{Model RF103}

\section*{10 ValVE ALL-WAVE SUPERHET radiogram chassis.}

\section*{SPECIAL FEATURES}
* 10 Valvecircuit.
\(\star\) R.F. PRE-AMPLIFIER.
\(\star\) WAVE BAND EXPANSION.
\(\star\) Large glass scale.
* 3 STAGES A.V.C.
\(\star\) TREBLE LIFT CONTROL
(Operates on both radio and gramophone.)
\(\star\) PLUS 6 db . BASS LIFT ON GRAMO. PHONE. (To restore bass cut on some records.)
\(\star 10\) WATT PUSH-PULL OUTPUT

To export buyers we can confidently recommend RFI03 to any firm abroad who contemplates making a high-grade Radiogram or Console radio receiver.

The lively short-wave performance coupled with the excellent quality reproduction ensure an outstanding performance.

We will gladly make any alterations to the specification to meet individual requirements.

To home buyers demonstration model now available to interested callers to hear, and technical specification now available on request.

It is hoped that a number (very Ifmited unfortunately) will be available for early deli\%ery.

The above model is for A.C. Mains. We also have a similar model Type UN 103 for DC/AC Mains.

\footnotetext{
 WARLTERS ROAD, HOLLOWAY, LONDON, N. Phone: NORth 3213
}

6-Valve A/C MAINS R/G CHASSIS, 15-50, 200-600, 540-2,000 Metres with TUNING INDICATOR, TONE CONTROL.

14 Gins. plus P. Tax.
Also available as tuning unit feeding push-pult amplifier. Blueprints can be supplied for home construction if desired

\section*{Send \(2 \frac{1}{2} d\). stamp for full illustrated lists to}

THE TELERADIO CO. 157, FORE STREET, LONDON, N. 18

Tott. : 3386

\section*{MIDLAND INSTRUMENT Co.}

OFFER GOVT. SURPLUS STOCK
ELIMINATORS. \(200 / 250 \cdot \mathrm{v}\). A.C. output 120 v . \(30 \cdot \mathrm{~m} /\) A. D.C., fitted neon stabiliser, brand new, 40/-. MOTORS, fitted centrifugal pump, \(12 / 24-v\). A.C. 11.0 . for Liyuids, brand new,
\(35 /-\) CAMERA controls, fitted \(12-v\). motor, \(35 /-\) CAMERA controls, fitted \(12 \cdot v . ~ m o t o r, ~\)
clockwork escapement, solenoid, etc., \(20 /=\) clockwork escapernent, solenoid,
Ditto, brand new, In wood cases, \(25 /-\) EX-GOV. UNITS, fitted 11-valves VR65A (4), OV6 (2). VR67 (2), VR92 (2), VR54, also relays, var-conde., ohokes, 50 resistors, 40 conds., chassis with cover, \(35 /-\) AMPLIFIERS, 1184,2 -valves, triode and Q.P.P., \(2-\mathrm{F}\). and \(120-\mathrm{v}\). operation, Ideal for microphone, pick-up or loudspeaking Inter-com., with modincalion dlagram, brand new, in transit cases, TRIC PANS, 12-7. A.C./D.C., power ful hiast, brand new, 25/- AERIAL VARIOMETFRS, No. 19 get, 3/6. ATTENUATORS, type 17,3/6. SELECTOR Awitches, 12/24-v. mpher MOTORS, TYPE "E," \(12 / 24-\nabla\). geared motor, contact breaker, s11ppressor, etc,, brand new; 20/. Cone \(19 / 8\), 50 , bakelite 2 way, 4 d . boxes of 50,126 , ONES 10 , 2 , Lo fit, 6-way, 2/6: 10 -way, \(3 / 6 ; 12\) way, \(4 / 6\). new, boxed, \(15 /\). SPARE COILS. \(19-v\), fitted new, boxed, \(15 / \rightarrow\). SPARE Colts. 12-v., fitted 12/6. EECEIVING SET RI224, range 1 to \(9 \cdot \mathrm{mc} / \mathrm{s}\) \((30\) to 300 -metrea), fitted 5 -valves, superhet, 2 -v. and \(120 \cdot v\). battery operation, Muirhead dials, a very smart set, brand new, ex/10/-, carriage \(10 /\) extra. CONTACTORS, master type 1 , a high-grade clockwork movement, giving 2 -impulses per sec., brand new, 25/. Remote contactora for sbole. 120 -impulses or 1-rev., ete, 12i6, 35/- the two instruments. GAND GENERATORS, gCnerates \(6 \cdot v\), at 5 -amp, complete with handle, brand new, \(30 / \mathrm{A}\), cut-out for Rame, If required to charge accumalators, \(b /\) extra. watt, \(30 /\), carrige \(5 /\). extra Other volluge and wattage output generators in tock. Also hundredo of other interesting Radio, Electronic and Mechunical tems to offer, send for our current lists, 2 d with S.A.E. over 30/- post-paid, carrlace extra Note nerease in postage rates. No C.O.D, orders under 20/-

Moorpool Circle, Birmingham, 17
Tel. : HARborne 1308 or 2664

IORTONS now have a full range of the
famous testgear resistors: Type \(A\) midget. \(11 / 8 \mathrm{in} \times 2^{3 / 4} \mathrm{in} 1.000 \Omega .2 \mathrm{a}, 600 \Omega\). \(3 \mathrm{a}, 4 / 9\) ea: 1.500』.15a, 5/-; Type B, \(1481 \mathrm{n} \times 34 / 4 \mathrm{n}\) \(1,000 \Omega .28,600 \Omega\).3a, \(750 \Omega\).3a, \(5 /\) ea; \(1,500 \Omega .15 a, 5 / 3\). Also 5 w R.M.A. coded wirewound from \(50 \Omega\) to \(2.500 \Omega\) (34 values), \(1 / 6\) ea; \(10 \mathrm{w}, 2 /\) - ea. Adjustable \(5 \mathrm{w} 21 / \mathrm{in} \mathrm{in}\) soin one slider, \(50,100,150,200,250 \Omega\) only, 1/9 ea. F'ROM Mortons, tow, London, E.17, Camden Ra., Waltham TARIARLE selective IF supplied. 18862 \(\sqrt{\text { kes, }} \boldsymbol{H}\) ermeability trimmed, Albion coil packs, 3 or 4 wavebands, adjustable iron dust cores, complete with circuit and test sheets, from \(36 / 6\); dials to mat, \({ }^{\text {p }}\), droppers, 5/6; Summersby high gain coils, ad justable dust cores low loss formers, \(3 / 3\) each; I. F. filters, \(465 \mathrm{kc}, 2 / 6.22\) 2 -speed drives, \(2 /\). 2 en c.o.d. over £1, postage 6d extra.-Castle Radio, 11. Mill Lane. Margate.
[8916 NEW STC selenium rectifiers, f.w. bridge\(12 / 1,2\) a \(15 / 5,3821 / 6,4 a \operatorname{sish} 17 \mathrm{y}\) 1.5a
 ali post 10d. Heavy duty type, 7in sq. A1 cooling fins: 17 v 6a \(34 / 1\), \(1 / 1 /-16 \mathrm{v}\) \begin{tabular}{lllllll}
\(10 a\) & \(43 / 8\), & \(p\). & \(1 /-;\) & \(33 v\) & \(6 a\) & \(63 / 8\), \\
\(10 a\) & \(71 / 2\), & \(28 v\) & \(20 a\) & \(139 / 3\). & \(54 v\) & \(6 a\) \\
\hline
\end{tabular} 90 v 6a \(166 / 4\); all p. 1/3. STC replacements for all valve-type chargers.-Pearce, 66 . Gt. Percy St." London, W.C. 1 (nr. "Angel ")
R ADIO components.- 50 brand new useful for only \(50 /-\) our a list price value of \(£ 20\) for only \(50 /-\); our assortment includes P.O standard relays, air dielectric condensers. selenium rectifiers, wire wound potentiometers, transformers, chokes. electrolytics. jacks, insulators, signal lamps, plugs and sockets, tag panels, i.f. transiormers, r.f chokes, block conderisers, etc., etc.: our pur chase of a complete Ministry of Supply store makes this unprecedented offer possible: order a sample parcel and come back for moreH.o.S., 24, Now Rd., London, E.1. [8745 TELEVISION spares! To constructors: nents: CRM91 good selection of compoinasks, £1/2/6; E.IFT. trans., from £3/2/6; focus and scanning coils. line output trans. RF collformers, \(1 / 2\) in, threaded with dust iron cores (adjustable). EF50, EA50, EL38, N' 45 . Pen46, AC5/pen, AC6/pen, T4I, U21, SU2150, etc. all at manulacturert; list prices; all caps of television condensers, 70-75-80 ohm twin and screened feeder, 1.000 radio valves and spares: send s.a.c. for lists. -Porritt, 13 , Wastdale Rd., S.F. 23 . HEARRY JAMES PRODUCTIONS, 270. specialjsts, c.o.d. or cash with orler. Elec speciajsts, c.o.d. or cash with oriler. Electrolytics, new not \(W\). D. surptus, B. I. Hunts,
etc. 8 m .d blocks, \(3 / 6\); \(16+8\) blocks, \(6 / 6\); etc. 8 mfd blocks, \(3 / 6: 16+8\) blocks, \(6 / 6\);
\(8+8\) can, \(6 / 3 ; 16\) can, \(5 / 6 ; 8 \mathrm{mfd}\) B.I. tuhu-
 lar, \(4 / 6\); chokes, midget \(5 /-25\) standard \(7 /\). Th. R.F, coils, M. \& L \(8 / 6\) pair; coil packs, 16.50 , \(\begin{array}{ll}\text { coils, M. \& } \\ 200-590, & 800-2100 \text { pair: coil packs, } 16-50 \text {, }\end{array}\) \(200-590,800-2100\), complete with trimmers
switch, etc., mounted on one unit, \(32 /-\) conswitch, etc., mounted on one unit, \(32 /-\) con-
densers, \(1, .01, .05,500 v\)
\(8 d\) \(\begin{array}{ll}\text { densers, } .1,01, .05,5007 \\ 2 \text { gang each; variable } \\ .0005 .12 / . & \text { with trimmers, } 13 / 6 \text { : }\end{array}\) loudspeakers, 5 in P:M. \(19 / 6\); 61/pin energised loudspeakers, 5 in P:M. \(19 / 6\); 61/pin energised 1,0000hms, 29/6; 8it P.M., 25/-; resisiors, spinatt \(6 \mathrm{~d}, 1\) watt \(9 \mathrm{~W} / \mathrm{s}\) volume controls, long spindle, w/s \(5 / 6\). L/s \(3 / 6\); transiormers, 350 \(30 /=\) output multi-ratio American heaters, 5.7 -pin and Octal 7d. Amphenol tyme 9d: voltage rinoppers, 2 a : Amphenol type, 9त; voltage rroppers, 2 a \(1.0000 \mathrm{hms}, 3 / 9 ;\). 3 a 800Ohms, 4/9; line cord, 3.core, 3a, 9d it. Valves. C.o.d. Large stocks of British and American S.a.e. for lists.
[8851 \&PEAKER trans. tapned ontput. ultra. \(\mathrm{S}_{\text {midget }} 5 /\) trans. midget \(5 / 6\), standard \(8 /-\) P.P. ontput (6L6 valves, A/A load 6,600 . P.P. ontput (6L6 valves. A/A load 6,600. ohms), output 7.5 and \(150 h \mathrm{~ms}\), \(21 /-\) P.P. modulation trans, for 807 valves, andio power 30 watts, \(2-1\), at \(12 / 6\); chokes; ultra-midget 40ma \(5 /-\) midget \(50 \mathrm{ma} 5 / 6\), standard 100 ma 8/6: hr. diry 150/200ma 12/6: "Rucn" trining assembly. assembled and fully wired for s.m.I, waves. On chassis, dial, pointer, I.F.s coils, padders, etc. Series heater wiring for use with \(6 \mathrm{k} 8 \mathrm{~g}, 6 \mathrm{k} 7 \mathrm{~g}\) valves, complete, factory tested and aligned, with circuit. \(£ 5\) : 5 v superhet. fally drilled chassig, \(111 / 2 \times 51,2 \times 24 / 4 i n, 7 /-\); Weymouth midget i.c. I.F trans. 465 Kcs , brand new. pr. 18/9: standard I.F. trans., pr. \(15 /-\); ditto I.F.s 2Mcs, each 2/-; M/L t.r.f. coils with raction. circuit, pr. 7/6; M/L. i.c. t.d.f. pr. 10/6: SML, aer \& osc, pr 10/6: sleeving, all colours. 1 mill. 35/40 yard reels, 1/6; twin variable resistance, 300 ohm, 1 amo. \(25 /-\) : Yaxley type. 3-pole, 2 -wav. \(2 /-4\) nole 3 -wat 3/-, 4nole 4-way 3/6; nice type DPTIT, 2/6; comprehensive lists \(n\) oothlv; \(21 / 2 d\) stamp \(t\) quiries: postage extra all orders. O. GREEENIICK. 265. Whitechapel Rd., London. E.1. Tel. Bishopsgate 5907.

\section*{POTENTIOMETERS}

Type T.W. Wire Wound
\begin{tabular}{|c|c|}
\hline Type T.W. Wire Wound \\
\hline Rating & KANGES \\
\hline \begin{tabular}{c}
5 Watts Max. \\
(linear) \\
3 Watts Max. \\
(graded)
\end{tabular} & \(\left\{\begin{array}{r}10-100,000 \text { S Max. } \\
100-50,000 \Omega \\
\text { (linear) Max. } \\
\text { (graded) } \\
100-10,000 \Omega \text { Non- } \\
\text { inductive }\end{array}\right.\) \\
\hline \multicolumn{2}{|c|}{ Type S.G. Composition } \\
\hline 1 Watt Max. & \begin{tabular}{c}
2,000 ohms to \\
megohms
\end{tabular} \\
\hline
\end{tabular}

CHARACTERISTICS : (both types) linear log.. semi-log.,inverselog., non-inductive, etc FULL DATA FROM

\section*{RELIANCE}

Manufacturing Co. (Southwark) Ltd. Sutherland Rd., Higham Hill, London, E, 17 Telephone: Larkswood 3245

\section*{GOVT. SURPLUS, UNUSED}

\section*{CONDENSERS of all types...}

We can offer, FOR IMMEDIATE DELIVERY from very generous stocks, a wide range of ultra-high quality fixed paper Condensers, from \(.001 \mu \mathrm{~F}\) to \(8 \mu \mathrm{~F}\). Also STOCKS of small, genuine MICA Condensers from .00001 (10 pf) to \(.01 \mu \mathrm{~F}\) (\(10,000 \mathrm{pf}\)). Prices are exceedingly moderate.
Enquiries are invited for manufacturers requirements, wholesale and export only for bulk quantities, and for scheduled deliveries over a period, as required. Condensers of close or very close tolerance can be supplied within about one week.

\section*{Please request our 4 page bulletin CONSEVEN Oll147}

\section*{CLAUDE LYONS LTD.}

180, Tottenham Court Rd., London, W. 1
and 76, Oldhall St., Liverpool 3, Lancs.

Impregnated High Grade Tronsformers voltages. Special list on application.

\section*{ALL NEW PRODUCTS}
Q.Max 50-1 S.M

Do. 8-1 S.M.
Do., 2 in. dials
Do. Nameplates
Do. " \(\$\) " Meter
Chassis Cutters, fin. Jin.
Keys for g in , \(\underset{\mathrm{g}}{\mathrm{in}} \mathrm{in}\).
Chassis Cutters, \(1 \frac{1}{2} \mathrm{in} .1 \mathrm{i} \mathrm{in} ., 1 \frac{1}{\mathrm{in}}\).
Keys for above
Stand-offs, lin., 6d. : lin., 9d. : Itin Flexible Drives
100 pp. Twin Var. (small)
Westinghouse Rec. 1.5 or 10 mA
Jones 8-way Plugs and Sockets
Thermal Delays
Filament Trans.-All Ratings MultlSpeaker Trans.
Cer. Variables (all capacities)
Test Prods.
2/6
.25 mfd. 5 kV Condensers
.1 mfd. 6 kV . Condensers
Crystals, "P" Coils \(\pm 1\) per cent.
Resistors, Speakers, etc.

\section*{HIGH "Q" CIRCUITS FOR DISCERNING AMATEURS}

Illustroted catologue 6d. post free.

C. A. RYALL, 65 , Nightingale Lane, Loncxtra, con. Wi or over, please send postages velope for our full list; U.S.A. make metal cased 500 v tubular 0.1 m , \(7 / 6\) dozen: Silver rica, \(200 \mathrm{pf}, 300 \mathrm{pt}, 400 \mathrm{pf}, 500 \mathrm{pt}, 4 / 6\) dozen: 500 whg. Micamoulded 0.004 ml , 4/- dozen: Mice 0.0 imf, \(3-2 / \%\) Mansbridge 1 mf 500 v wikg., \(3-2 \%\); all condensers guaranteed: Ainphenol type ibritish 5 -pin valve holders. \(4 / 6\) dozen: U.S.A. paxalin a-5-6.pin, 3 spindle, \(1 / 6\) 550.000 hm short spindle 1/6; Bar type 3 gang, 0.0004 mf short spindle. 5 /-; Bar type 4 gang, 0.0004 ml short spiaie. \(1 /\) watt, \(1 / 4\) watt, gang \(0.0004 \mathrm{mf}^{5} 5 / ;\), lesistars, assortment, \(40-5 / ;\) Plastic group boards, drilled, less tags. 9w, types, \(3-1 / 6\); Switchei \(\mathbf{S B} .2 \mathbf{P}\). miniature \(2 /-\); 3B.2P. 6w, 5P. total, 2/6; 2B.3P, 3w, \(2 / 3 ;\) Res panels, 5 -way with 25 mf and three res., \(1 / 3\); Twelve-way group boards with \(9-1\) watt and \(1 / 2\) Twelve-way group boards with 9-1watt and \({ }^{\text {an }}\) Octal plugs, can and socket, 3-2/6, wlth tags Octal plugs, cap and socket, \(3-2 / 6\), whge ear pads, with good class microphone all wired into pads, with good class microphone all wired into plug, rubber padded, plug type fini/h with quarter-inch paxolin panels, fixing lugs and corner sockets, size \(81 / 2 \times 71 / 2 \times 31 / 2 i n\) deep, \(6 / 9\) each complete: International Octal valve holders, Paxolin chassis type, \(4 / 6\) dozen: Metal-cased Lubulars, 0.5 m ! 350 v , at 71 d C. wire ends, \(3-2 / 6\); Fitteen relays in carrying rack, mounted, with cover, \(42 / 6\). \({ }^{2}{ }^{[8928}\) M components, \(\mathbf{S} / \mathbf{M}, \mathbf{N} / \mathbf{M}\). P.T. and block condensers, close tclerance resistors and all types resistances, potentiometer, lamina tions, valve holders, glass cartridge fuses, \(11 / \mathrm{in}\); suppliers to learling inanufanturers;
ail goods guaranteed. - L. F. Simmonds, 10 , ail goods guaranteed.-L. F. Simmonds,
Valencia Rd., Btanmore, Mx. Grimsdyke 608 , CELECTOR switches, 5-bank, 25 way, per 0 bank 20/. each; toggle switches, telephone jacks, press switches, 20 way tag boards. E.S. holders, lead ends, E.S. holders, screwed, Yax ley type switch, 3-pole 2 -way, each \(18 /-\) per dozen; voltmeters, \(0-40\), ampmeters, \(0.50,15 /\) per pair, condensers, 8 mid 700 volt, \(6 /\) each condensers. \(4+4,500\) volt. \(3 / 6\) each; conden switches, 5 section. 10 pole, \(15 /\)-each: 10 section, 20 -pole, \(25 /\) - each; 0.0003 tuning condensers, 3/-each; relays, 200 ohm, 3/. each delivery by returo.-Particulars, H. 8. F. Den ford, Box Trees Mill Wheatley, Halifax, Yorks WRITH RADIOCRAFT, Ltd., The Leicester specialists. offer from their comprehensive stocks: Woden de luxe potted output
 \(10 \mathrm{~h}, 150 \mathrm{ma}, 25 /-20,40\) and 80 m Eddystone 4 -pin coils, 5 - set of 3 . Headphones, hrand new Ericsson 120』, 12/6 pr; do., Utah, Chicago \(240 \Omega\), luxury job, \(15 \%\) pr.; tuning condensers, \(160 \mathrm{p} \mathrm{F}_{3 \text {-gang, ceramic insulation }}\) condensers, 160 pF 3-gang, ceramic insulation. 7/6: single gang 100 pF , \(3 / 6\). Meters, 3 in flush type. \(0-100 \mathrm{microamps}(10,000 \Omega / \mathrm{v}), 21 /-\); flush type. \(0-20\) ac, \(12 / 6,10-0.10 \mathrm{~mA}\) dc, \(12 / 6 ; 1-01 \mathrm{~mA}\) de. \(12 / 6 ; 0.20 \mathrm{a} \mathrm{de}\) 15/-; \(350-0.350\) millivolts de, \(15 /-; 0-500\) microamps de, \(25 / ; 0.100 \%\) modulation (1 mA fad). \(25 /\)-; 2 in square flush type, \(0-1 \mathrm{~mA}, 25 /-i \quad 50-0-50 \mathrm{a}, 7 / 6 ; 0-20 \mathrm{v}\) dc, 12/6; 0-5a \(\mathrm{rf}, 7 / 6 ; 0-3 \mathrm{a}\) ri, \(7 / 6 ; 11 / 2\) in flush type, \(0-500\) inicroamps, 7/6. Bargain parcels : Service type multi-way plugs and sockets, 12
asstd., \(5 /-;\) Systoflex, \(72 y d s\) asstd., \(5 /-\) new asstd.. \(5 /-i\) Systoflex, \(72 y d s\) asstd., \(5 / \dot{0}\) new
resistors and condensers, 25 asstd., \(5 / 6 ; 50\) resistors
asstd., \(10 / 6 ; ~\)
100 asstd.,
£1... Satisfaction assuaranteed or money refunded without queslion. Latest lists free on request. Trade sup-plied.-Frith Radiocralt, Ltd., Leicester. Tel. 5PH27. N.R.S. "Overseas 5 ," 5 -valve 3 -wase THE N.R.S. "Overseas 5 superhet assembly for ac mains, \(£ 6 / 17 / 6\), universal model £6, conslating of all main components, factory mounted on chassis, only small resistors, capacitators required to complete, valves, speakers and highly polished veneered cabinets available; send postage full specifications; component bargains: Selenium metal rectifiers, very compact, 250 v 45 ma \(5 /=350 \mathrm{v} 70 \mathrm{ma} 8 / 6\); flament translormers, ideal converting midgets to ac, \(6.3 v 1.5 \mathrm{amp}\), 12/6; standard shrouded mains transformers. input 110.250 v . \(300-0-300\). 6.3 and 5 v output. 27/6; superior permeability-tuned i.f.s. 465 \(\mathrm{ke} / \mathrm{s}, 13 / 6 \mathrm{pair}\) high-flux p.m. speakers, 5 in , less trans., \(17 / 6,61 / \mathrm{in}\) wlth \(24 / 6\), 8in R. \& A. less 21/- with 27/6; revolutionary new hiph Q \(^{3 \text { 3-wave iron-cored coil packs, unusuany }}\) Avo instruments. Pullin ten thonsand o.p.s. multimeters, ac/de/olhms, logns; Poter 0.0005 -gangs, 8/6; electrolytics 8 plus 16, 350v
 25mid bias, \(2 / 3\). send postage for speclal
W.W. monthly bargain \(11 s t\); torms, c.w.o. or c.o.d., postage strictly extra under \(£ 5\).-

\section*{GALPINS \\ ELECTRICAL STORES}
408. HIGH STREET, LEWISHAM, LONDON, S.E.I3
Phone: LEE GREEN 0309
TERMS : CASH WITH ORDER (NO C.O.D.) EX-GOVT. (GEC) ELECTRIC FANS, 12 voles \(A C / D C\) laminated field, complete with 5 in impellor. New boxed, 25/- each, 1/- post. Transformer to suit 230 voles input \(10 / 16\) voles at 4 amps. outpue, \(32 / 6\) each.
MAINS VARIABLE RESISTANCES. EXGove. (new) slider type, 450 ohms to carry 0.7 amps. \(30 /\) - each ; 4,000 ohms. .25 amps. 35/. each. Worm wheel control slider type, 60 to carry \(1 \frac{1}{2}\) amps., \(27 / 6\) each ; 5.7 ohms 8 amps. 32/6 each. Dimmer resistances stud switch arm eype 2,700 ohms to carry 27 amps., \(30 /\) - each.
EX-GOVT. (NEW) MAINS TRANSFORMERS, \(200 / 250\) voles 50 cys . I ph. input \(525 / 0 / 525\) volts \(150 \mathrm{M} / \mathrm{amps} .6 .3 \mathrm{v} .5 \mathrm{a} ., 5 \mathrm{v}\).3 a. output standard rating, \(35 /-\), post \(2 /\). . Mains 5 moorhing Chokes, 10 Hy . \(150 \mathrm{M} / \mathrm{amps}\). 180 ohms D.C. Resistance, \(8 / 6\) each. Ditto, \(100 \mathrm{M} / \mathrm{amps}\). 5/6 each, post 9d. Smoothing Condensers (oil filled), 4 M.F. 1,000 volt working, 3/6 each. Al the above can be offered in large quantities). Please write for speciai quotation.
EX-R.A.F. MICROPHONE TESTERS (new) These consist of a FERRANTI 0 to 450 Microamp 2 in. scale meter shunted to I.M/A incorporated Westinghouse Rectifier, the whole encased in polished teak case calibrated at present 0 to 10 volts, \(32 / 6\) each.
EX-R.A.F. POWER UNITS, TYPE 225 (new). Containing the following components: 3-V.U.III Rectifier Valves, I-5U4G 2-EB 34s, 3-Multi Contact Relays. High Voltage Condensers, Chokes, Transformers, etc. To clear, 65 - each.
EX-R.A.F. ROTARY CONVERTORS, D.C. To A.C., 12 volts D.C. to 220 voles 50 cys. I ph. A.C. at 100 watts, \(85 /-\) each. Ditto, Admiralty Pattern, 110 volts D.C., Input 230 volts A.C. output at 200 watts, \(612 / 10 /\) each. C/F Ditzo, 220 volts D.C. Input, same output, \(\mathbf{6 1 5}\), C/F. Another, 24 volts DC. Inpue 50 or 100 voles 50 eys. 1 ph. at 300 warts, \(63 / 15 /-\) each, C/F.
EX-R.A.F. CRYSTAL CALIBRATORS UNITS. Type 18 R.A.F. serial No. 10a/15237. These unirs contain \(100 \mathrm{~K} / \mathrm{cs}\). xstal 2-EF 50 valves and numerous other items all new and unused,

\section*{35/- each.}

SPECIAL OFFER METERS, ALL NEW BOXED. Moving Coil First-grade Instruments, 0 to 20 volts \(10 /\) each, or 3 for \(25 / \mathrm{F}\); 0 to 40 volss, \(12 / 6\) each : 0 to 10 amps. 15 -each: all 21 n , scale. 0 to 25 volts A.C. calibrated 50 cys., 25/- each : 0 to 4 amps. Thermo Coupled, 25/- each; 0 to 0 to 4 amps. Thermo Coupled, \(25 /\) each : 0 to
3,500 volts Elecerastatic, \(35 /\) each, all \(2 \frac{1}{2}\) in. scale. MAINS TRANSFORMERS (AUTO WOUND). Voleage Changers tapped 10,20, \(25,90,130,150,190,210\), and 230 volts, all at 1,000 watts, a combination of 34 voltages can be obtained from this Transformer, new ex-Gove. stock, \(65 / 10 /\) - each, carriage \(5 /\).. Mains Booster Transformer, tapped \(0,6,10,19,175,200,220\), 225. 240 , and 250 volts at 1,500 watts (new ex-Govt.) 65/5/- each, carriage 5/-. Another 200 voles input 240 voles output at 2,500 watts, 67/10\%, carriage 7/6. Another 2 so 1 ratio. 110 voits input 220 voles output or vice versa at 4,000 watts, \(£ 12 / 10 /=\), carrlage \(10 /-\). Another 230 voles input eapped output \(40,41,42,44,46\), 47.49 , and 52 volts at 100 amps., 15 each, carriage \(10 /-\); the latter two are doubte wound. Another auto. wound, sapped \(0,110,150,190,210\), and 230 voles at 1,500 watts, \(66 / 10 /-\) each, carriage \(5 / \mathrm{F}\). Ditto, 2,000 watts, \(67 / 5 / \mathrm{c}\), carriage \(5 /\)

\section*{EX-NAVAL CATHODE RAY RECTIFIER} UNITS. These units are new and weigh 90 lbs Consisting of high voltage condensers, 15 volume conerols, chokes, approx. 100 resistances and condensers all coloured, coded or marked, valve and tube holders (no valves), transformers are included but are for 500 cys ., price to clear, \(42 / 6\) each, carriage pain.
MAINS TRANSFORMERS, EX-GOVT. All 50 eys. input 230 volts input \(500 / 0 / 500\) vole at \(250 \mathrm{M} / \mathrm{amps}\). L.T. 5 y. 3 a., \(37 / 6\), carriage \(3 / 6\). Another 50 volts at 30 amps. output, 75/- each, carriage 6/. Another two L.T. windings, \(6 \frac{1}{2}\) volts at 10 amps ., \(27 / 6\) each. Another 230 volts input 700 volts at \(150 \mathrm{M} / \mathrm{amps} ., 4\) v. 2 a., 4 v. 1 a . output, \(27 / 6\) each, carriage 3/6. Another 700/0/700 voles 80 m.a. 12 v. 1a., 4 v. 2 a. output, 30/- each.

" \(\boldsymbol{q}^{\text {" }} \times \mathrm{MIDGET}\) COIL PACK. Size only 31im. \(\times 2\) in \(\times 1\) in. deep. Comprising if ultrib-milget Iron-cored coila wound on Polystrene formers, wave-change awitch, trinmers, etc. Three wave band for \(46 \overline{\mathrm{k}} \mathrm{k} / \mathrm{cs}\). superhet operation. Aligned and ready for use. Complete with suituble 5 Valve S'Het circuit. A definite advance in Coil construction. PRJCE ONLY
\(33-\).
\({ }_{0}^{3}\) Other
Vearil wave Superhet coil packe in stock include M1DGET I.F. TRANSFSRMERS
21. - Wr. Wermouth \(18 / 9 \mathrm{pr}\). \(465 \mathrm{k} / \mathrm{cs}\). Weurite

WEARITE "P" CJILS. -Frall range is kept in stock and can be supplied at 3 - each.
VALVES. We can definitely supply per return 185 and 1R5 at 15/10. 384 and LT4 at 14/- eath. We also have in dtoek many diflicult types, including 35 L60T, 25A6, 2026, 68LL, 68C, \% I3CT, 12SA7 128K7GT, \(12807 G T, 12 \mathrm{~K} 8 G T, 12 \mathrm{~K} 7 \mathrm{GT}, \mathrm{MKT} 4\) PDin, etc., ete. All at curterst controlled Irices. PUSH PULL OUTPUT TRANSEJRMER. To suit elther 2 -bl6 or \(2-P A 4\). kated \(80 \mathrm{~m} / \mathrm{a}\). N.C. each
half. To match \(2,4,8\) or 15 ohm speech cuils. \(18 /-\) half.

STAMP W1LL BRYNG OUR LATEST
COMPONENT LIST.
CAEH WITH ORDER, OR C.O.D. (over \(\{1\)).
5, HARROW ROAD, W. 2 PAD 1008/9

\section*{PITMAN Radio Howlis}

\section*{CATHODERAYTUBE HANDBOOK}

By S. K. Lewer, B.Sc. Sets out the basic principles of design, construction and operation of the cathode ray tube. second edition. 6s. net

\section*{THERMIONIC VALVES IN MODERN RADIO RECEIVERS} By Alfred T. Witts, A.M.I.E.E. special handbook for all engaged in com mercial radio work. Second edition
103. 6d. ne:

\section*{A DICTIONARY OF ELECTRICAL TERMS By S. R. Roget, M.A., A.M.Inst.C.E. A.M.I.E.E. A handy guide to electrical en gineering technology, including radio com munications. tourth edition. 12s, 6d. net \\ WIRELESS TERMS EXPLAINED \\ By "Decibel." A helpfol guide to the technical terms used in books on wireless and in manufacturers catalogues. Second edition \\ 3s. net}

Sir Isaac Pitman \(\&\) Sons Ltd Parker Street, Kingsway, W.C. 2

QUPPLIERS of high-grade radio componenta including television and high fidelity radio equipment; all types of radio and electronic apparatus built to your specification; large stocks of close tolerance resistors.-Rogers De velopments Co., 12, Macclesfield St.. W.1 EELENIUM metal rectifiers, charger kits over \(15 / \mathrm{m}\). Circuit and lata supplied. S. S.C 12 v 3 amp selenium rectifier with 50 -wat iransformer and ballast bulb for 2 v to 12 charger, \(45 /-\); clitto for \(2 \mathrm{v}, 6 \mathrm{v}\) mly \(42 /-\mathrm{F}\) 2 anp rectifier with transformer and ballas bulb for \(2 v .6 v\) charger, \(33 /=12 v 1\) amip rectifier with transformer and ballast bulb for \(2 v\) to 12 v charger, \(35 /-\) : 12 v 4 amp rectifier With 75 -watt transformer and ballast Bulb for \(2 v\) to \(12 v\) charger, \(62 /-12 v 6\) amp rect. witt 140 -watt lrans. and ballast bulb for \(6 \mathrm{v}, 12\) charger, \(\mathrm{x}^{5} 5\); trickle charger 2 v rectifie: with trans. for 2 v trickle charger, \(13 / 6\); heavy dut charger kits for small radio store tansformer seleninm rectifier, ballast bulb, no ammeters or rheostats needed, for 1 to 20 cells 1 amp, 95/litto 2 amp , \(6 / 5\), gmaranteed one year Rectifiers only, \(12 \mathrm{v} \quad 3 \mathrm{amp}\) S.J'. \(\mathrm{A} ., 2 \mathrm{I} /-; 12\) 4 amp, 25/-; 12 v 5 amp. 27/6; giant 12 v 6 amp. with alloy couling fins, \(33 /-; 24 v 2.5\) amp, \(32 / 6 ; 12 v 2\) amp. \(12 / 6 ; 24 \mathrm{v} 4\) amp. amp, \(32 / 6 ; 12 v 2\) amp. \(12 / 6 ; 24 v\) amp 12 v antp \(10 / 6\). 11.1 rectifiers, small space seleniunn. \(250 \mathrm{v} 60 \mathrm{ma}, 9 / 6\); clitto bridge 100 ma sull wave, \(16 / 6 ; 110 \mathrm{v} 60 \mathrm{ma} 9 /-; 120 \mathrm{v} 20 \mathrm{ma}\) full wave, \(16 ; 6 ; 110 \mathrm{v} 60 \mathrm{ma} 9 /-i 120 \mathrm{v} 20 \mathrm{ma}\) elminator type. \(7 /-\) also \(350 \mathrm{v}-0-350 \mathrm{y}\) 80ma \(13 / 6\); instrument rectifiers, Sma, \(12 / 6\); erystal clodes, \(2 /\) Rolia 8 in. . speakers ess trans., 17/6; Rothermel Senior bakelte pick-ups, \(52 / 6\); Lustraphone \(m / \mathrm{c}\) mikes, \(58 / 6\); 80-watt fluorescent chokes. 230 v . 19/6. Champion, 43, Uplands Way, London, \(\frac{\text { N. } 21 .}{[9170}\) Tel. Lab 4457. RADIO, 746b, Romforl Rd. Manor Park, London, E.12: 2-gang 000.5 condensers with feet. 9/6; line cord, \(20 /-\mathrm{doz}\). yds.; tubular condensers, \(0.1,0.01,0.05,5 / 6\) doz. 8 mfd can or cardhoard, \(39 /\) - doz.; can type \(16 \mathrm{mld} ., 4 / 3\) pa.; \(16+8,7 /\) - ea. \(; 16+16\), \(7 / 3 ; 8+8+8,7 / 3 ; 24+8,7 / 3 ; 8+8,6 /-; 4 \mathrm{mfl}\) can, \(15 /=\), doz; condensers clips, \(4 / 6\) doz. ; resistances, sizes from \(220 \Omega\) to 2.2 meg. \(1 / 2\) Watt, 3/- doz.; assorted ww res, 1 and 2 wath handy sizes, \(2 / 6\) doz.; V/cs \(50 k\) short spindie, 12/- doz.; standard V/cs with sw long spindle 100k and 50k. 42/- doz.; 5k up to 2 meg., 4 , w, job lines \(12 /\), doz.; all wave glass dials. \(8 \mathrm{in} \times 5 \mathrm{in}, 3 / 6\) ea.; midget knobs, less grub screws, \(1 /\) - doz: 4 -pin UX ceramic valveholders, 1/- doz.: Mazda octal valveholders, 3/6 doz ; anchoring tags on Paxalin panel, 3/ross; grid cap and lead on panel with 570 res attached, 4/- doz; Paxalin panels with anchoring tage. 3-4-11 way 3 -way, \(1 \mathrm{~d} ; 1\) watt carbon res., \(27,000,75,000\), \(4 /-\mathrm{doz}, 10.000\) \(5 \mathrm{w} 5 / \mathrm{doz}, 0.0005\) mica fixed condensers /6 doz. Westectors \(1 / 8\) ea. meter rectifiers. 2/6 doz. W estectors, \(1 / 8\) ea., meter rectiners. \(5 \mathrm{ma}, 5 / 6\) ea.; Coractual piug and socket, \(1 / 6\); arphones, son 2 wh headoands, 4 pair. high resistance earphones, 8!- pair; earphone nserts or mike, \(3 /-\); ex-Government test meters, see last months advert., fol extra for postare end s.a.e. All enquiries 6d extra for postace GOUTHEPN RADIO'S wireless bargains.\&OUTHEPN RADIO'S Wireless bargains.Transmitters' Construction Manual, 2/6; Radio Repairs Manual, 2/6: Car and Portable Radio Manual, 2/6; Radio Valve Manual, alternalive and equal American valve types, \(3 / 6\); Radio Circuits, receivers, transmitters, power packs, etc, \(2 / 6\), Sliort Wave Handbook, 2/-; Dica Short Wave Hanc book. 2/6; Manual of Direct Dise Recording 2/6; 'Test Gear Construction Mallual, \(1 / 6\) Radio Pocket Book, colour code, formulas, ete., 1/-; Bulgin Radio Service Manual, 2/6: Radio Constructors Manual, 3/-; Television Constrnctors Manual, 3/-; Radio Aerial Handbook, \(2 / 6\); Radio IIints Manual, 2/6; Amplifiers, fully llustrated, 2/-; Radio Resistance Chart. resistance values at a glance, \(1 /-\) ' Ten Hows for Radio Constructors, 1/-; Radio Reference Handbook, cloth bound, up to date information a! aspects of radio. \(12 / 6\). Anierican se rice Manuals, Crosley-Belmont, Sparton Enerson, Stewart Warner, Fada, \(12 / 6\) per volume: postage extra on all publications; send \(21 / 2 d\) tamp for full list of latest publications; exArmy throat mikes, brand new with 3ft lead and jack plug, 4/6 each, post 6d. Lufbra adjustable ho'e cutters. for use on wood, metal or plastic. 5/-1 post 6d: relavs. brand new Post Office 30 ohm; 400 ohm plus 200 ohm 150 ohm and 500 ohm, \(2 / 9\) each post \(6 d\). Tannoy carbon microphone inserts 216 eacl post 6d: A.C motors, input 200/250 volts A.C., revs 2.000 r.p.m. constant sueed power anp. consumption under \(1 / 6 \mathrm{~m}\) an weight 201 bs

GOUTHERN RADIO BUPPLY, Ltd., 46 , Lisle St. London. W.C. 2 Gerrard 6653. \({ }^{46}\) [8926

High Quality
TRANSFORMERS and CHOKES

Made specially for your requirements. All coils layer wound and insulated between layers.

Our modern factory is fully equipped with vacuum and pressure impregnators and all the latest testing equipment.

POWER OUTPUTS
up to 4 K.V.A.
AUDIO RATINGS
3-200 watts

\section*{AUSTIN MILLS LTD. LOWER CARRS STOCKPORT}

\section*{Specialists in}
high POWER - high quality
Puilic adoriss sysiets
* RyPIITITS from 150 W to IkW

\section*{W. Bryan Savage Ltd} westmoreland road, london, w.w.o

Telephone: Colindale 7131

\section*{You'ie SURE to get it at STERMS}

Avo Meters. Vutrersal Minor, £8 10s. No. \({ }^{7}\)
\(£ 19\) 10s. Sig. tien., £13, ville-Tester, £16 10 s Electrolyties. Dubilier, 8 mfd. 500 v. \(4 /\). (Canried \(4 / 6\)), 88 10ff. 500 v, \(6 / 6 ; 16 \mathrm{mid} .500\) v., \(6 / 6\)
 117, " HILh. 450 ., 3.
 21/mp:ir. Wesmouth Perm. Tuned, \(18 / 9\) pr
Service Cap. Tuned, \(12 / 6 \mathrm{pr}\). (\(110 \mathrm{k} / \mathrm{cs},. 15 /-\mathrm{pr}\)).
Coils, T.R.F. Matched pair M. \& L., 6/9 pr. WerMouth T.R.F. Matehed Jair, M. \& \(1 / 4\). \(9 / 6\). Wearite \(\because I^{-1}\) Coils-complete range A., H.F., Ose., A.F. and B.F.O., \(3 /\)-each
Tuning Cond. (Twin (iang). . 000.5 mfd., \(9 / 6\) (with

Resistances. Most values available in \(, \quad, 1,3,5\) 10, and 20 watt, from 4 d . each.
Condensers. Tubular, .1, . \(31, .5, .05 \mathrm{mfd}\). , etc., at Pd. each
Potentiometers. Centralab. \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}\) I, 支, 1 , thut mer, lese Switch, 43 , with Switeh, \(6 /-\) Midget with \(\mathrm{Swith}^{2}\) it and 1 meg., \(6 /=\)
M/Coil Sreakers. Page Sin. P.M, 15/-, Rola Sin P.M. 21/6. (Nnerg. 1,000 ohm with Tfr., 29/6) 1,500 olim., 31.6 of 2,000 ohm. with Tif., \(36 / 6\)) (xondmans lGin. P.M., \(35 /=\) Rola 1Uin. P.M. 326 or Enelg. 1,500 ohm. with ग'st., 36/6.
Filament Transf. Imput \(200-230-250\) v. Output Auto Transf, Input 200-230-250 v. Output tapper
 M Transf. 250-0.250v., \(80 \mathrm{~m} / \mathrm{a} / .6 .3 \mathrm{~F}\). 4a. (tapped 80 . \(5 \mathrm{v} .2 \frac{1}{2} \mathrm{a}\). (tapped 4 v.), \(31 / 6,350-0-350 \mathrm{v}\) both tapped \(4 \mathrm{v} ., 37 / 6 \mathrm{l}\). \(400-0-400 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}\)

Ex-Govt. Ultra Midget 0 put Transf., 32-1, and P/Pull Intervalve Transf., \(2.5-1\) each half. both lim. ximi each half, and O/put Transf. \(60-1\), both 1 in. 1inin. xlin. 3 - each.
 ordering please cover packing and postage.

\section*{STERN RADIO LTD.}

115, FLEET STREET, E.C.4.
Telephone: CENtral 5814 and 2280.

\section*{LONDEX}

\section*{for} RELAYS

for A.C. and D.C. 2 VA Coil consump tion from 2 to 600 volts and rested to 2000 volts, Aeria Changeover Relays, Mercury Relays Measuring Relays and Time Delay Relays.

Ask for leaflets
Relay Lf RE/WW

ANTESNAE rods, suit car acriads, aft long by brass diam. coppered molybdenum steel; \(3 / 16\) in brass spigot one end; enquiries invited,
very large quantity available; also thousands rotary transformers, wuit contersion to fractional h.p. mains motors.-Auto Collections Ltd., 126, St. Albans Av.. No. 4 Chiswich 1601), or 15, Iawrence St., Northampton.
(MERICAN BC610 tuning units, with A MERICAN BC610 tuning units, with \({ }^{3}\) switch, coils, crystai holder, plated case, etc 8/-; new ID8 Octal 1.4 volt multi-valves, \(20 /\) new 954. 955 acorns, \(10 /\)-; new 957 acorns, 1.4 volts, \(10 / ;\) all post paill (send for lists it
metal valves, lighthouse valves, A.C. relays. transformors, vibrators. chassis and compon ents).-Jack Porter, Ltil., 22-31, College St Worcester.
[9030 R ADIO CLEARANCE, Lta.. 27, Tottenhan 1 Court Rul., W 1 'Mus. 9188.-10-valve S.W. receivers, R.1481, range 65-86 m/c: \(V R 53^{\prime} \mathrm{s}\), DET' AVC FB34, AI VR57. ontpul VR67, 6 ir S.M. dial. B. \(\mathbb{F} . \mathrm{O} .\), tuning meter, RF and LF Gain controls, require P.'P, 250v transit cases: as our previous lot and we are now able to offer these sets, which lend themselves readily to modification for 5 m tes, F.M., etc., at £7/19/6. Circuit diagram supplied with each leceiver. P.M. speakers, large magnets, \(\Delta \mathrm{L} 1\) speech coil, 5 in less 1 rans. trans, 3?/6. all new and boxed. Electrolytics. 8 mf ; \(170 \mathrm{v}, 2 / 3 ; 16+24350 \mathrm{v} .5 / 6 ; 16+16 \mathrm{mf}\) \(350 \mathrm{r}, 5 / 6 ; 16+32 \mathrm{mf} 350 \mathrm{r}, 5 / 6 ; 32 \mathrm{mf}\) 350v \(\begin{array}{cc}4 /-; & 8+8 \mathrm{mf} \\ 12 \mathrm{v}, 1 / 9 ; 100 \mathrm{mi}, & 4 /-; 8 \mathrm{vi}, 1 /-100 \mathrm{mf} \\ 1 / 2 \mathrm{v}, ~ 1 / /-\end{array}\) Moving coil milliameters, \(0-10 \mathrm{ma}\), 2 in square, 9/6; 0-30ma, \(2^{1 / 2 \text { in }}\) circular, 8/6; 0-150ma,
 \(0-100\), 15/11. All the above are thnsh mounting. 750 micro amp \(21 / 2 \mathrm{in}\) plug in calibrated for use with thermo-couple a raliation meter, \(8 / 6\). Meter rectifiers, 1 ma bridge type, 6/11; ex-R.A.F. visual indicators. type 3 , with 2 Weston 300 micro amp move-
ments, \(5 /\); cross over needle with 260 micro amp morements, \(5 / 11\). Gang condensers single, \(0.0005,2 / 11\); single \(0.00015,2 / 3\); gang 0.0005 with epicyclic, \(10 / 6,4\) gang
 1 m 2 m Volume controls, carbon. n S.W., \(10 \mathrm{~K} .20 \mathrm{~K} .50 \mathrm{~K} .100 \mathrm{~K} .2 /\) [9168

WANTED, Voigt light twin unit and corner \(W^{\text {ANTED, Mazda type } 12 \mathrm{~h}}\) c.r.t.-Wood W ANTED, small quantity wire. as used in A UDIO frequency laboratory wishes to pir A UDIO frequency laboratory wishes to pur putable manufacturers (Marconi. Muirhead, Salford, Dawe, elc.); distortion factor meter wave analyser, microvolter, A. F. attenuator sensitive valve volmeter. impedance oridge, -Write to Box S19/1, Harwood Press (Adver tising), Ltd., 47, West St. Tlarrow. Middx REPAIRS AND SERVICE

\section*{M}

AINS transiormers rewound. new trans MOTOR rewinds and complete overhauls; first class workmanshin, fully guaranteed
F. M ELECTR1C Co., Ltd., Potters Bldgs Warser Gate, Nottingham. Est. 1917. Tel. 3855 MAINS iranstormer rewound and con-livery-Brown, 3. Bede Burn Rd., Jarrow. [3460 LOUDSPEAKER repairs, British, A merican Lu any make, moderate prices.-Sinclaiz
Speakers, 12 , Pembroke St., London, N. 1 Speakers, 12, Pembroke St., London, N.]
H LECTRICAL measuring instruments skil E fully repaired and recalibrated.-Electrical Instrument Repair Service, 329, Kilburn Lane, London, W.9. Tel. Lad. 4168. \(R^{\text {EWINDS }}\) and conversions to mains and ment a speciality.-N.L. Rewinds, 4.'Brecknock Rd., N. 7 . Tel. Arnold 3390 ; Repairers of 6283
\(\$\) types of British and American receivers coil rewinds; American \(\mathrm{a}_{\text {alves, }}\) spares, lime cord.-F.R.I., Ltd., 22. Howland St. w. 1 R EPAIRS to moving coil speakers. cones - coils fitted field rewound or altered speaker transformers, clock coils rewound, guaranteed satisfaction, prompt service:
mains trans accepted.
 Upper Tooting. London, S.W.17. Batham 2359
CTURDY rewinds, mains transformer CTURDY rewinds, mains transformers and guarantee satisfaction! 14 year's experience; prices an request.-Sturdy Electric Co Ltd., Dipton Newcastle-on-Tyne.

\section*{M.WISOND \\ NOW IN STOCK IMMEDIATE DELIVERY SPECIAL}

VARIABLE SELECTIVITY J.F. TRANSFORMER
445 kes., giving the choice of three degrees of selectivity. 1. High Selectivity. ". Medium 3. High Fidelity: Controlled by three position switch. Iron cored, screened. The second I.F. is centre tapped on both primary and secondary to reduce damping. Circuit diagram suppliet. Price \&1 per pair.

\section*{NEW CIRCUIT}

A/C.T.R.F. High Fidelity Receiver. 5 Valves. 2 H.F. stages, infinite impedance detector, Triode output. Two wave-bands, Medium and Long. Provision for P.U. and Ext. Loudspeaker. Blue prints, \(3 / 6\), two practical

\section*{and one theoretical}

\section*{6-VALVE SUPERHET CIRCUIT \\ 3 Wavebands. \\ A.c. only.}

A circuit that will please the most critical. This circuit has been designed to receive all worthwhile stations on the medium wave band (\(200-540\) metres) with a high fidelity outpit. Short Waves (\(16-47\) metres) are as good as obtained on some purely short wave receivers. Austratia and America have been received regularly by many of our customers at loudspeaker strength. Long Wave: The few stations now operating are well received.
Blue Prints. 2 Practical and 1 theoretica with detailed priced list of components, 3/6 per set.

CIRCUIT No. 20
10 valves, 6 wave-bands, 12 watts (undistorted)
Output Superheterodyne Receiver This set is noted for its tine quality of reproduction on radio and gram. We have received much appreciation and congratula tions from customers on its performance. A demonstration model is available at our premises at 307 High Holborn
FULL SIZE BLUE PRINTS (2 practical and 1 theoretical) and priced list of com ponents \(5 /-\). Any component may be pur chased separately.
We are always pleased to demonstrate Receivers built from our blue prints without obligation, and you are cordially invited to call, see and listen.

One minute's walk from Chancery Lane Underground Station.

\section*{307 M1CH HOL: 0 RN}

THE "WILLIAMSON" AMPLIFIER
If you are very critical of the reproduction Prom the average "quality" amplifier, this is the instrument for you. The designer claims this to be " virtually distortionless," to which we would add that the " attack" and transient response sets quite a new standard We are now producing this amplifier to specification with first-grade components in

\subsection*{227.10 .0}

We shall be happy to arrange demonstrations by appointment.
Orders are being handled strictly in rotation A limited number of acoustically designed

\section*{L. P. DISMORE (formerly MORTON \& DISMORE)}

52c Oldchurch Rd., Chingford, E. 4 Phone: SIL. 4987.

\section*{HILL \& CHURCHILL LTD. \\ BOOKSELLERS}

\section*{SWANAGE, DORSET}

\section*{Available from Stock:}

Fink, " Radar Engineering " 42/-
Fink, "Principles of Television Engi-
Kiver, " Television Simplified"
Zworyking \& Morton, "Television Skilling, ", Fundamentals of Electric Lauer, Lesnick \& Watson, " Servomechanisms Fundamentals
Emery, "Ultra High Frequency Radio Engineering "
Sarbacher \& Edson, "Hyper and Ultra High Frequency Engineering "

Postage extra.

CATALOGUE ON APPLICATION

\section*{Does these}

ACCURATELY and QUICKLY Chassis, Brackels, Shrouds, Condensor and Transformer clips ANNING Steel or Alumiaiu
Five sizes- \(12^{\prime \prime}\) to \(36^{*}\) ull parviculars from ASHTON-UNDER-LYNE

\section*{COVENTRY RADIO}

Component Specialists since 1925
T.C.C. CONDENSERS. \(450 / 550\) volt\(2 \mathrm{mfd} .3 / 3 \mathrm{~d}\)., \(4 \mathrm{mfd} .3 / 9 \mathrm{~d}\)., 8 mfd . 4/6d.. \(8-8 \mathrm{mfd} .7 / 6 \mathrm{~d}\).

350 volt. - \(2 \mathrm{mfd} .3 /-, 4 \mathrm{mfd}\). \(3 / 3 \mathrm{~d} ., 8 \mathrm{mfd} .3 / 9 \mathrm{~d} ., 16 \mathrm{mfd} .4 / 9 \mathrm{~d}\)., \(8-16 \mathrm{mfd} .7 / 6 \mathrm{~d} ., 16-24 \mathrm{mfd} .9 /\)-,
Wearite " P "Coils All types in stock, \(3 /\)
Wearite 465 kc.I.F.Transformers, pr. \(20 /\)
HIGHEST GRADE COMPONENTS ONLY. No Rubbish.
Send for our 1948 list, price 3d, post paid.
COVENTRY RADIO
DUNSTABLE ROAD, LUTON, BEDS.

\section*{SEND US YOUR LIST}
of requirements, and we will immediately let you know which items-usually \(99.5 \%\)-we can supply FROM STOCK, and the prices. Present constant changes in supplies and prices make the issue of a worth-while Catalogue almost impossible, but we DO carry the most comprehensive stocks of Radio Components, Valves, Material and Test Equipment in the trade!
For a new experience in PROMPT and diligent attention send your enquiries roday, PRINTING your name and address in block capitals, and enclosing \(2 \frac{1}{2} d\), stamp.
WIRELESS SUPPLIES UNLIMITED (Proprs. Unlimitex Radio Led.)
264-266, Old Christchurch Road, BOURNEMOUTH, Hants.

AREWIND service which duplicates or
modifies as requtred; transformers, loud speakers, etc; prompt returns.-Raldel Services, 49. Lr. Addiscombe Rd., Croydon. Crn. 6537. R FWINDS; mains, output transformers, H.F. fields, chokes, etc.; wave-winding and H.F. coil repairs, all makes; 25 years' experience; reasonable charges: prompt delivery.-
II. W. Forrest. Shirley, Bham. Shi 2483 . R EWINDING of all types of transformers 1 chokes, etc.; quick service; motor rewinds of all types; replacement bobbins supplied; vew transformers to any specification.-Radio \& Transformer Services, 570, Manchester Rul. Hollinwood, Lancs.
[8638 IOUDSPEAKER and transformer repairs quickest service in the trade at coter the quices. Send ld for our monthly service halletin, Dept. W.-A.W.F. Radio prodncts ing Borough Mills, Bradiord, Yorks. Tel. 22838 COUDSPEAKER repairs, any make, reason11 able prices, pronpt delivery, to the trade and quality fans; 25 years combined experi ence with Rola, Magnavox, Goodmans, CelesRd.: Kingston-on-Thames. Kin. BCO8, \([4977\)
 \(\mathrm{K}^{\text {EWIN }}\) coil, chokes, high-grade workmanship, 7 . day delivery; new transformers constructed to ciestomers specification, singly or in quantiFinchler Rd. N.W Radio Service \(\mathrm{Co}_{\mathrm{H}} 1021\). Finchley Rd. N.W.11. Speedwell 3000. [3719 24 -HOUR service, 6 months' guarantee, any and transformer rewind mains outputs supplied to specification; business heading or service card for trade prices.-Majestic 1 inding Co., 180 , Windham Rd., Bournemouth COIL specialists.-Tuning and oscillator coils, wound and wound to mains transformers reing, L.S. repairs.-Electronic Services (R.T.R.A.). 17, Arwenack St., Falmouth, Cornwall and 49. Uxbridge Rd. Ealing, W.5,
\(R\) EWINDS.-Armatures, fields, transformers, 1 pickups, vacuum cleaners, gram. motors, speakers refitted new cones and speech coils, All guaranteed and promptly executed. vacuum cleaners, most popular makes. Newd stamped addressed envelope for list of radio spares and c.o.d. service.-A.D.S. Co., 261-3-5 Lichfield Road. Aston, Birmingham., 6. [8238 LOUDSPEAKER repairs,-L. Cottenham, Lor the leading repair specialist of the North, paired, fields rewound to any ; all types repaplacement rewound to any resistance, field and quick service: seen competitive prices Loudspeaker Repair Factory L. Cottenham, Bradsord, Yorks; enquiries NATIONAL RADIO SERVICE \& TELF: immediate sen CO.-Trade service engineers; immediate service any district; rewinds to all lypes transiormers, armatures, motors, loudspeaker cones, speech coils fitted, British and American components and valves; enquiries invited for contract trade service; multiple transiormer winding.-63, High St., St. John's
Wood, N.W.8. Primrose 6725 .
MISCELLANEOUS

SPEECI \(^{\text {disability; Mr. H. V. Hemery con }}\) sults at Wigmore Hall Studios, W. 1.
W.W., Jan., 1943 -Aug., 1947; £3 or nearest WALNUT radiogram cabinets, manfs samples, few only, \(36 \times 32 \times 18\); stamp "de tails.-Walters, 501, Hale End Rd., F. 4. W remuneration a receiving sat make for valve amplifier.-Lampard, 2, Lexden Rd. 20 tons 22 and 26 gatige single 9002 \(\approx 3\) covered conper instrument wires avail able for inmpuediate delivery; samples sent on \begin{tabular}{l}
able for inimuediate delivery; samples sent on \\
request. Box 4502 . \\
\hline 8909
\end{tabular} CHPCUIT diagrains (individual lesigns) to
order: chassis lavonts suggested. data and technical advice for radio enthusiasts; special tuition by correspondence.- Write; R. G. Yoıng, 3a, Bridges Ri., Wimbledon. COPPER and resistance wire, silk, rayon, swg; Litz wire, \(27 / 42,27 / 44\) and \(27 / 46 ; 10\) tons in stock at \(10 \%\) under market price.-.C. Leatherbarrow. Ltd., Grand Bldgs., W.C.2. Whitehall 3948 for our new bargain list of racks, panels, ampliflers, aluminium and dural sheet, dural tube: for example, R. 1155 s (without units, \(25 /-\); post free; salvage R. 1155 s (without valves and cases), useful for spures, 35, carriage free--Fanthorpe, A LWAYS sure of a good reception.-Radio A. Craft. \(21 / 6\); C.Q., \(21 / 6\); Radio News Q.S.T. 21/6; Life (International), \(40 /-\) Look, 25/-; Saturday E. Post, 55/\%, etc.-For full list of all other American magazines, send s.a.e. to Willen, Itd. (Dept. 52), 120 ,
St. Georges Rd., london, E. 10 .

\section*{DO YOU OWH THESE?}

BC.348. This much coveted receiver has a frequency range of \(200-500 \mathrm{Kc}\). and \(1.5-18 \mathrm{Mc} / \mathrm{s}\). Six position switch brings separate frequency calibrated dial tuto position and superfine Yernier tuning unit gives 90 turus of tuning for each band-two stages R.F.three states I.F.-crystal filter-vollage stabiliseron all hiudk-phone and speaker constant sensilivit on air riuds-phone and speaker output-all standand for 28 volts. Note thiste with plug-in Dynamotor A.C. mains equipment can easily be fitted in ita place (ive waill supply detailan or do the fol in required) Brand new and complete. PRICE \(£ 3210\) 10, plus 10 carringe.
BC.312. Rattery version of the fumous BC.342, brand new, complete with apare valven. PRICE \&25. For more details see our November advertisement of drop 118 a card.
R.208. The Army precision recelver, covers \(10-60 \mathrm{Mc} / \mathrm{p}\) Buil-in power pack for A.C. mains or 6 -voll battery lopuls- ballt- speaker - phone jacks--Muirheail slow R.F. R.F. gain-cest panel on front-complete with all \(30 /\) - extra. £1 w th be refunded on return of patcking
DATA Books. Copied from official publications, giving circuit diagramis, component values and useful notes: BC.342-BC.348-BC.312-BC.221-R.208R. 103A-R. 107 -M.C.R. 1 -R. \(1155-\) W/B. 22 -RT. 18 Talkie 58,36 - \({ }^{-1}\) Demobhed Valves, \(2 / 6\). WINTER List free on appleation with athmp.

\section*{BULL'S EX-GOVERNMENT DEPOT}

42-46 WINDMILL HILL, RUISLIP MANOR MIDDLESEX.
Open sats. till 5 p.m. Weekdays till 6 p.m.

\section*{RADIO BATTERY TESTER /}

Use " Quixo " method
of battery testing.

\section*{Reliable results. \\ Guaranteed.}

Send for interesting leafiet
Rins on battery testing.

\section*{RUNEAKEN : MANCHFSTER}

\section*{EDDYSTONE '640’}

We are now booking orders for this first-class communications receiver. Demonstration model on view at our Show Room.

EDDYSTONE '504' in stock 52 Page Catalogue of Components \& Accessories I/- Post Paid.

\author{
B.T.S. \\ The Radio Firm of the South. \\ 63, London Road, Brighton I, Sussex.
}

\section*{Hilition}

The advance in Radio Technique offers unlimited olpportunitles of high pay and aecure posta for those Radio Engineers who have had the foresight to become technically qualified. How you can do this quickly and easily in your apare tlme is fully explained in ou unique handbook "Engineering Opportunities." Full detalls are given of A.M.I.E.E., A.M.Brit.I.R.E City \& Guilds Exams., and particulars of up-to-dat coursen in Wireless Engineering, Radio Servicing Short Waves, Television, Mathematics, etc., etc.

We Guarantee ' 'NO PASS-NO FEE'
Prepare for to-morrow's opportunities and futur competition by sending for your copy of this very informative 112-page guide NOW-FREE.

\section*{BRITISH INSTITUTE OF ENGINEERING} TECHNOLOGY (Dept. 388)
17, stratiord Place, London, W. 1

\title{
WINDING REWINDING \\ AND \\ LOUDSPEAKER REPAIRS
}
armatures, fields, motors, bobbins and solenoids.
Nearly ready, Portable and Indoor Television Aerial.

\section*{Enquiries to}

\section*{Southern Trade Services Ltd.} 297/299, HIGH STREET CROYDON

\author{
'Phone: CRO 4870
}

\section*{AMERICAN AIR FORCES 8 VALVE COMMUNICATIONS RECEIVER BC.348.R.}

We have been fortunate in obtaining a quantity
Unlike most ex-service receivers, these are BRAND NEW and UNUSED, and in every respec
VALVE LINE-UP, \(6 K 7\) first R.Fi, \(6 K 7\) second R,F., 6 J 7 converter, 6C5 local oscillator, \(6 \mathrm{K7}\) first I.F., \(6 F 7\) second I.F. and B.F.O., 6B8 third I.F., second detector and A.V.C., 6 K 6 output,

Frequency coverage
\(500-200 \mathrm{Kcs}\).
\(35-1.5 \mathrm{Mcs}\).
\(3.5-1.5 \mathrm{Mcs}\).
\(6.0-3.5 \mathrm{Mcs}\).
POWER SUPPLY A built-in 28-volt
6 bands as follows
9.5-6.0 Mcs.
\(13.5-9.5 \mathrm{Mcs}\).

\subsection*{18.0.13.5 Mcs.} Dynamotor makes this the ideal set for those accumulators. For those on normal mains supply, the Dynamotor is easily removed and replaced by a power pack.
The many refinements include a Crystal Filter, and the choice by means of a switch of A.V.C. or Manual Volume Control. The sensitivity is better than I microvolt.
All sets are as stated above BRAND NEW and UNUSED, and are COMPLETE WITH INSTRU'CTION BOOK. Don't delay. Order yours now.

ONLY \(£ 32\) los. (carriage, ete., \(10 /\)-).
C.W.O. please
S.A.E. for lists.

THE RADIO CORNER (GGRI,
138, GRAY'S INN ROAD, LONDON, W.C. 1 (Terminus 7937)
(We are 2 mins. from High Holborn, 5 mins. from King's \(X\))

SPEAKER fabric fibre mesh, used by leading set makers, cut squares \(\left(6^{1 / 2}, 1 /-1\right),(9,1 / 9)\);
\((12,2 / 9) ;\) post 3 d; 25 p.c. off 3 dozen lots post \(1 /\) inc. purchase tax, c.w.o.-Burman, 64 , Reighton Rd.. Clapion, E.5. London. [9027 A LUMINIUM chassis and panels to your A. requirements of in standard sizes, we can punch for valveholders, etc. i sample prices Mead, 13 . Bence Lane, Darton, Barnsley. JUNCTION electric irons, complete with stand, switch connector and flex, again avalable, very prompt deliveries, chrominm in the world, a.c., d.c., in all voltages: with rich range of other household electrical appliances. Distributors, Brooks \& Bohm. \(\begin{array}{lll}\text { apphances.-Distribntors, Brooks } \\ \text { Ltd. } 90, \text { Victoria St., London, S.W, } 1 . & \text { [9023 } \\ \text { PADIO News-Anerica's leading radio }\end{array}\) \(\boldsymbol{R}^{\text {A DIO Nag News-America's leading radio }}\) story of modern radio developments in news, articlez and pictures month by month; every up-to date theory and its practical application; whether you are a technician, industrial or business executive, amateur, ham, or what-
ever your interest in radio may be, you canever vour interest in radio may me,
not afford to miss Radio News; monthy copies posted to you direct from America for \(£ 1 / 5\) \& year, \(22 / 5\) two years, £ 3 three years, payable in advance; send eull address in block
letters, cash with order, to: Trechnical Supletters, cash with order, to: 'Technical Sup-
pliers, Ltd, Hudson House, 63, Goldhawk Rd., pliers, Ltd, Hudson House, 63, Goldhawk Rd..
London. W.12.
WORK WANTED
NSTROMENT gear cutting capacity.-Lloyd
\(\&\) Ramsden, Hunting
\& \& Ramsden, Huntingdon St., Notingham. CAPACITY available any iob in radio Yorks. CAPACITY a vailable for assembly, wiring tities.- Box 4028. FACTORY has technical staff and capacity other arlicles in glass.-H30x 4462 . [8853 SMALL firm has capacity for manufacturing fittings; presswork a speciality; individual or quantity orders.-Box 4771. 18991 Wor home and export: immediate de liveries-Radiac, Lta., 26, Brondesbury Rd.. CABINETS!-Large modern factory now has capacity available for additional radio cabinet manufacture; we have every facility fo large-scale productions: let us quote you.-
Box 3745 .
8645 Box 3745. \({ }^{\text {SGINEFR starting high class coil w }}\) Wh ing business desires to contact firms
who could supply own wire; only quality who could supply own wire; only quality
work undertaken; eoils up to 5 in dia. \(\times 7115 \mathrm{n}\) work undertaken; eoils up th 5 in dia. \(\times 79008\)
lnitg. \(25-50\) swg.-Rox 4774 . TARGE old-established public company in production woodwork and excentional facilities and resources for the production of radio and gramonhone cabinets would welcome enquiries from the trade- Enquiries to Box 3900. [8665 TRANSFORMERS, chokes, coils, etc. reor wond end manaiactired to order, bingle available to help solve your problems: liglit engineering, turning, spot-welding. pressing, enquiries for contract work in rited. - Millett \& Holden. Ltd.. 2. Pembury Rd., Westolifi-on-Sea, Essex.
[8982

\section*{SITUATIONS VACANT}

Vacancies advertised are restricted to persons or emplouments excented from the provisions of the Control of Fnaacement Order. 1947.
CrTY of Wakefield Fducation Committee.C Wakefield Technical College, Principal G. N. Blair, M.C., B.Com., A.C.I.S., F.I.I.A. AN instrument mechanic is required for the
Department of Technology and Science. Department of Technology and Science. Applications are invited from men who have served an apprenticeship as am instrument mechanic and who have had subsequent experience in that capacity.
A SENIOR laboratory steward is required for the Department of Technology and Science. lluties will be primarily concerned with the physics, chemistry mechanics and electrical laboratories. Applications are invited from men who have served an apprenLireship, preferably in some branch of engineering. Previous experience as a laboratory steward, although not essential, is desirable. Experience of storekeeping or of simple maintenance work would be an advantage. Salaries £ 300 per annum, rising by three annual increments of \(£ 15\) and one of \(£ 5\) to \(£ 350\) per annum. Further Information regarding nature of work, hours of duty, superannuation, holidays, etc., may be obtained from the undersigned on receipt of a stamped addressed envelope. Applications should be returned within 15 days of the issue of this advertisement. tion Office, 27. King St. Wakefield.' 8.12.47.

 8D2,9D2, 1001, 11D3,11D5, 128R7, 25Z4, 15D2. COSSOR- \(4 T P B, 4 \mathrm{TBP}, 138 P A\). \(13 \mathrm{VPA}, 4080 \mathrm{~A}\), \(41 \mathrm{MHL}, 41 \mathrm{MP}, 41 \mathrm{MPT}, 41 \mathrm{MRC}, 41 \mathrm{STH}, 42-0 \mathrm{~T}\) 420T. DD, 42 PTB, \(202 \mathrm{VP}, 20^{2} \mathrm{VPB}, 203 \mathrm{THA}, 210 \mathrm{DDT}\), \(210 \mathrm{DG}, 210 \mathrm{LF}, 21 \mathrm{ks}\), \(220 \mathrm{HPT}, 2200 \mathrm{~T}, 220 \mathrm{P}, 220 \mathrm{PA}\) DDIA, MP/PEN, MS, PHS, MS/PENB, MVS/PEN OM4, OM6, O3!, OM10, PT10.
HIVAC,-XD, XH, XL, XP, XSG, XY, XW. D.
MABCONI/OSRAM.-CRT-E4 \(102 / \mathrm{B} / 7, \mathrm{D} 4\), D4, MABCONI/OSRAM,-CRT-E4102jB/7, D41, D42,
D63, DA30, DG2, DL63, DL/4M, GTIC, D63, DA30, DG2,
\(\mathrm{H} \%\). H63, HA2, HD24, HL2, H \(122 \mathrm{~K}, \mathrm{KT2}, \mathrm{KT} 41\), KT44, KT61, KT63, KT66, KT71, KT74, KTW61,
KTW63, KTZ4I, KTZ63, KTV73M, L2B, L63, LP2, IS5B ML41, MKT4, ML4, M84B, MSP4, MX40, N14, P2, PTV5H, PX25, QP21, S23, U10, U14, U16,
 \(303,304\).
MAZDA.-AC5PEN, ACxPEN, AC/P, ACPen, ACP4, ACTH1, [1, DCP, DC8G, DD41, DD101. DD207, DDG20, H210, HL2IDD, HL23, HL23DD, HL41, EL41DD, HLA2DD, HL133DD, HLDD1320, P41. Peneñ, Pen45DD, Pen453DD, PenDD4020, QP25, OP230, \&G215. SP41, SP42, \&P2220, TH4321, TP22, TP25,TP20, UU7, V914, VP23, VP41, VP133, VP1322. MULLARD.-2D4A. 2D13C, 5U4, 5Y3, 8C5, 6C6, 61) \(6.67,616,6 Q 7,6 R 7,164 \mathrm{~V}, \mathrm{AZI}\) A731, CBLS1,
 DF'51, DP91, DK91, DL35. DL92, DO24, DB26. 1)O30, DH2, DW4/350, EA50, EB34, EBC3, EBC32, ECH35, EFs EF' EF22, EF37, FF39, EF50, EFs4, EL2, EL3, EL32, EL33, EL35, EL38, EL50, EM34, HVR2A, IW4/500, KBC32, KF35, KL35, Pen4VA, Pen428. PenA4, PM2, PM2YL, PM4DX, PM12M, PM22A, PMD2G, QP22B, SP4, SP13, SP13c. T6D, TDIN2A, TDD13c, TH4H, TH30C, TT4, U62, UPR
\(V P 2 B, V P 4, ~ V P 4 A, ~ V P 1 B A, ~ V P 13 C, ~ U B L S 1, ~ U C H 21, ~\) UY21, UY31.
AMERICAN OZ4, 1A4, 1A5, 1B4, 1D7, 1E5, 1E7, 1F4, 1F5. IF6, 1F7, 1G6, 1H6, ILC6, 1LN5, 185, 1T4, 1TD. 3Qb, 6AB7 6AK5, 6B4, 6B7, 6B8, 6C4, 6C5, 6C6, 6C8, GDb, 6D6, 6D8, 6ES, 6E6, 6H7. 6F' 6 F7, 6F8, 6G6, 6H6, 655, 6J7, 6.J8, 6K6, 6K7, 6K~, 6LE, 6LB, 8Lन. 6N7, 6Q7, 6PE, 6R7, 68A7, 6SC7, 6SF7, 6SG7, 6SH7, 6SJ7, 68K7, 6SL7, 68N7, 6887, 68R7. TG: 7C6, \(7 \mathrm{C} 7,7 \mathrm{H7}, 787,787,7 \mathrm{Y} 4,10,12 \mathrm{~A}, 12 \mathrm{~A}\). \(12 \mathrm{~A} 0,12 \mathrm{BT}\), \(12 \mathrm{CB}, 12 \mathrm{~J} 5,12 \mathrm{~K} 7,12 \mathrm{~K} 8,12 \mathrm{Q} 7,128 \mathrm{G}, 12 \mathrm{~B} 8,125 \mathrm{~K}\), \(125 Q 7,12 S F 5,128 R 7,1447,1488,14 Q 1,2,32,33\). \(34,35 A 6,3525,38,37,38,41,42,48,46,48,49,50\) \(53,55,57,58,77,79,80,81,83,84,89,807,832,8804\),
 Order C.O.D. ahove llsted numbers or equivalents (sulbject to ac was have it. Old and new types are arriving dally,

STOP PRESS Just in : OBLI, C1N, EK
TSP4, 2P, 6A7, \(25 L\) git,
TEIS MONTH'S SPECIALS
American Service Sheets, dozen 10/6.
Midget Speakers, 2 in., suits MCR, also as extensions or mikes, \(7 / 6\).
"Radlo Servicing and Maintenance," 8/6.
Trimmer Tool Kits (old price), 30/-. 10 Books (unre peatalle), \(36 /\).
A Yo Battery Oscillators, 12/-
TAYLOR Meters on eary ternin
Ex-A.M, Batteries, Inert \(120 \mathrm{v} ., 10 / 9\).
Ex-A.M, Matorg, work off \(3 k\) to 8 v . battery, \(12 / 6\)
Vidor Portable Elec. Cooker, w. oven (no tax), £2/2/6.

\section*{BROOKES CRYSTALS EST. 1929 LTD.}

FOR YOUR
Crystal
requirements
51/53, GREENWICH CHURCH STREET,
LONDON, s.E.10. \({ }^{\text {Phone: }}\) GRE. 1828

\section*{The periect balance}

\section*{the Lowter mantacturnge co.}

Lowther House, St. Mark's Road, BROMLEY, KENT.

Rav. 5225.

\section*{FOR RADIOVALVES}
\[
\begin{aligned}
& \begin{array}{l}
\text { At B.0.T. prices, British and American, these are only } \\
\text { a eelection of our } 10,000 \text { valves beld in stock. Please }
\end{array} \\
& \text { a zelection of our } 10.000 \text { valvea held in stock. Please } \\
& \begin{array}{l}
\text { send or our comprehensive Valves A vailable List, Iree. } \\
\text { enelosing S.A.E. for reply, Postaze 6a. pxtrn, C.W.O. }
\end{array} \\
& \begin{array}{l}
\text { enelosing S.A.E. ior reply, Posta } \\
\text { or C.O.D. Retailers not suppiled. }
\end{array} \\
& \text { MULLARD- } \mathrm{KT} 32, \mathrm{KF}^{3} 35, \mathrm{KBC32} \text { KLis, } \mathrm{FC2}, \\
& \text { PC2A, VP2, } 812, \text { PM123, TDD2A, PM2A, PM22A, }
\end{aligned}
\]
EP36, EF37, EF39, EF50. EP54, EC31, EC52, EC53,
EB31, EBC3, EBC33, ECC31, EL2, E13, F.L33,
ELS5', ELS7, EL38, EL50. EBL31, EB91, PM24M,
TT4, TH4B, VP4, VP4A, VP1B, SP4, SPiB. 201A

> UBL21, UYㄹ1, EBL21, ECH 21.
> AMERICAN RANGE-15, 18, 26, 31, 32, 34, 37,

> 2546.
> OCTAL RANGE-X65, KTW61, KTW63, KTZG3, KT63, KT66, X 7331 , D63, DH63, D1/33, KT01, KT74, KTW74, K71. KT73, KT71. KT76, zis. KTZ73.

> M. RANSOM,
> BOND STREET, BRIORTON, Phons Brianton 5609

MINISTRY OF CIVIL AVIATION APPLICATIONE are invited Mechs. Grade II as radio mechanics at civil aviation radio stations in the United Kingdom. Candidates must possess a knowledge of the fundamental principles of radio and radar with a general
knowledge of one or more of radio nids for navigation: Direction Finding f,oran, Gee, Radar Beacons, A.C.R. or G.C.A They should also have had practical or Gerienc in the use of tools, filing, drilling, hard and soft soldering, cabling and wiring and be ex perienced in the use of electrical and radio tneasuring instruments including cathode ray oscillo-scopes. The possession of City and Guihls Certificates in Radio Communication and fech nical Electricity will be an advantage. The pay will be 115/- per week, inclusive, rising by of \(130 \%\) a week. Applications which mustum in writing stating Apple of birs which must be qualifications and date of birth, full details of relerence C. and experience and quoting the the Establishment Divlsion be addressed to the Establlishment Divlsion, Ministry of Civil R ADIO engineer St, London, E.C.4. [8981 R ADio engineer, experienced in practical pects.-Courtenay Davis, 12, Station Rd. Harpenden. Tel. 418 . 9163 A FULLY skitled radio and television ser good wages and pleasant prerking conditions IUNIOR engineer required for developnient pany in Surbiton area; degree or equitalent pan electrical TUNIOR engineering essentlal.-Box 3903. UNIOR laboratory asssstant with some knowledge of physics and some electrical raining.-Write, giving detallis of experience, Valine. S.W 18 A II. Munt. Ltd., Bendon SECRETARY to research manager of pro Matriculation company in Surrey required: ial: position would IPEOUIRED radar experience--Box 4772. K Wales, near Aherdare, experienced radio and television design engineer.-Write, stating age, qualitications, experience and salary re juired, to Box R. F. E., Smith's Library Aberdare [9091 TECHNICAL representative, aged 30 to 40 ferred, to contact manulacturers of radio and electronic equipment in North Country.
quited. Box 4960 [901 J UNIOR laboratory assistant, 20-22, with ap to Inter-B.Sc standard for preserahly and process testing.-Write, for raw material experience, age, etc- Write, giving details ol experjence, age, etc.. 10: A. H. Huut, Luf.
Bendon Villey, S.W.18. D EVELOPMENT engineer required for test some previous measuring instrument design: some previous experience and suitable tech: nical quatifications essentlal.-Send full par-
ticulars to ticulars to Paylor Electrical Instruments, IEADING Company requires junior develop ferably ment engineer (inter B.Sc. standard) preferably with experience in radar or communiCat 1015 work; commencing salary between \(£ 350\) and
cellent prospects for advancement.
dot CERVICK engineers and assistants for ship born centimetric radar equipment required; applicant should be prepared to live in a port and travel as work requires; prePP.1912, W. He given ex-Naval men.-Box TECUNICAL sales representatives required L by electromedical specialists; sales experlence essential, also technical knowledge of valve circuits, salaty, commission and ex penses; areas: London, S.E. England, North Midlands; car owners preferred,-Details Bos SENIOR draughtsman required for company manafacturing radio and electrica! equipment, sood salary, prospects and 5 -day week-Write, giving lull details of experi ence and salary required, to Taylor Electrical Instruments, Lid., Montrose Ave., Slough. Bucks.
[9139 A opportunity is now open for an eng ing radio and electrical experience in design onpany as chiet engine equipment to join or a man with the right experience. initia ive and organising ability.-Write to Box REBUQURED for radio factory in South 1 Wales, near Aberdare, small parts mechanical designer. preferahly experienced in radio and televisjon production.-Write, stating age, qualifications, experience and salary re-
quired. to Hox \(\boldsymbol{H}\). F.. Smith Library Aherdire to

\section*{A.C.S. RADIO}

SPECIALISTS IN SHORT WAVE
High Quality Audio. Sound Film and Television Equipthe Experimenter and Home Coustructo

\section*{COMPONENTS}
by Eddystonc. Raymurl, lammad. ladgear. Woden, etc. Including Variable condensers, tramsmitting, receiving and nebtralising typen: Pixed Condensers, milca; prper block Foomers. Inciodma Wearite sipt Mica: Colla mad Coll ceramic and Dl.9 Pormers. Malne Tranmformerm and srnoothing chokes; R.F. Chokes: Metern and Teat Gear Loutspeskers from 3iin. to 12 in ., fincluding the famoun Volgt Unitm; Amplifiers by G. I Productm und lenke Metal Cabinets and Chassim by Eddystone. Full range of viven, including Mullaral, Marconi, Osrams, Marda, Conator VH.F Tungeram recelving typen. U.S.A. types inchuling typer by Standant \(9001,9002,9003\) rerles: Trundmitth 100TH,TZ40, \(808,866 \mathrm{~A}\), it Y50. RK20 A, RK100, ete

\section*{COMMUNICATIONS RECEIVERS}

\section*{Our aecondhand list "S.W, W." Is revised every few weeke} and detilins our current stock of receivers. We are generilly alise to offer modeln by NATIONAL, HALLICRAFTERB, R.C.A, etce, as well as Oscillatorn, Teat Gear, etc. Thit ist, engethe whin our Compoaea calatogue W.W.," wil

44 WIDMORE RP BROMLEY, KENT 'Phone ANEnsboume ols6'

\section*{Beethoven Borair contzinoms \\ 220 D.C. to 220 A.C.}

BEETKOVENELECTAKICEQUIPIIENTLTD.
Reethoven Works, Chame Road London. N.W. 10

\section*{WIRELESS CABINETS}

Manufacturing capacity available with speedy delivery of Cabinets and Speakers of all sizes and designs to individual requirements. (Trade enquiries only.)
BIRNE Y SMALLWOOD PRODUCTS LTD.
"Swan Worns," Fishers Lane, London W.4.

\section*{THESE ARE IN STOCK}

Radar System Engineering. Ed. by L. N Ridenour. 45s. Postage 9d.

Radio Engineering, Volume 1 . Sandeman. 45s. Poseage 10 d .

Television. By V. K. Zworykin and G. A Morton. 42s. Postage 8d.

The Machematics of Wireless. By Ralph Stranger. 7s. 6d. Postage 5d.

Radio Data Charts. By R. T. Beatty 7s. 6d. Postage 5d.

Electricity Meters and Meter Tescing By G. W. Seubbings. 16s. Postage 6d.

Network Analysis and Feedback Ampli fier Design. By H. W. Bode. 42s. Postage 8d.

The Wireless World Valve Data. 2s. Postage 2d.

We have the finest selection of British and American Radio Books. Complete Ilst on application.

\section*{THE MODERN BOOK CO.}
(i-23, PRAED STREET, LONDON, W. 2

\section*{1948}

PDWER UNTTS,
CHOKES, DUTPUTS
For all published designs.
Skilful engineering, latest technique with new versatile mountings and ease of connections. Robust, silent working, accurate ratings, ensure long and satisfactory service.
A Transformer for the quality amplifiers or the smallest midget recsiver, we make it.
Power trans. for W.W. Quality, 57/6.
Output Transformer for 15 ohm., 60
Your choice from 77 production units, or Kits of Transformers and Chokes for building your own amplifiers, \(42 / 6\) set of three. Kits of these components are available for amplifiers up to 40 watts.

\section*{Write for 1948 Supplement}
(IIlustrations of new types cannot be shown in this limited space.)

1948 New Models in factory-built amplifiers. Now incorporating bass and treble boosting, improved de luxe versions of all previous models.
Example AC/10 PLUS for home gramo, with
two inputs, impedance filters for any pick-up, bass boost couplings, etc., \(£ 10\).
Our AC/I8 and AC/IBMIC models now greatly improved. Ask for details.
If you are unable to obtain G.L. Products from your local dealer, please write us. Full catalogues on transformers, amplifiers, speakers, microphones, spares, etc., send 3d. stamp.

\section*{GENERAL LAMINATION PRODUCTS \\ LIMITED}

BROADWAY, BEXLEYHEATH

\section*{Are yon missing the GHEATEST HARGAINS in}

Rotary Transformers Type 79. Input 26 volts. Output 300 volts, 220 mills, plus 150 volts, 6 M.A.
 POST FREE

\section*{ALSO} Ex R.A.F. New and Unused in Sealed Cartons. Motor Generator, Gear Box, Blower, esc. Input 9 volts. Output 450 volts, 500 milis. Motor revs. approx.
1,500. Gear box approx. 12 R.P.M. plus i R.P.M. May be made into an efficient A.C. Motor by removal of D.C, Brushes and putting field in
Mains.

Post free 30/=
WIRELESS INSTRUMENTS (Leeds) LTD. 54-56, THE HEADROW, LEEDS, I

YOUNG engineer required as representative of leading electronic instrument manuifacturers, London area; C. \& G. Grade III or equivalent Service qualifications; state age, experience and salary required.-Box 4966. [9021 A SSISTANT engineer required for our radio broadcast receivers; applicant must have held similar position for three or more years.Write in first instance stating full particulars and salary required to the Personnel Manager, McMichael Radio. Ltał., Wexham Rcl.. Slotigh. TECHNICAL Assistant wanted for technical e manufacture; experience in this type of work essential: some knowledge of high vacuum technique and glassworking practice desirable West London area.-Appleations incruding alary required. to be addressed to Box 4975 TECHNICAL assistant required by well district for investication of improved processes in cathode ray tube manufacture; degree in chemistry or an equivalent qualification desirable; industrial experience on similar work an asset-Applications, which should include frell details of training, experience, age an salary expected, to be addressed Box 4962 \(H^{\text {NGINEER }}\) required for laboratory investi-- gation and measurements in conjunction with radio and electronic devices; experience in
electron optics desirable, with ability for origielectron optics desirable, with ability for original design; applicants should have reached
accepted standard of education and carry adeaccepted standard of education arience; West Viddlesex area.-Apply giving age, full details of education and experience to Box 4770 TECHNICAL assistant required by large - electrical manufacturer; applicants should have had practical experience in the servicing design radio receivers, and be familiar with the selected candidate would be required to submit reports and compile instruction books on test gear and give practical demonstrations-Write piving full details of age, experience and salary required, to Box 4501. 18908 ST. DUNSTAN'S requires an assistant for re recording and other electronic aids for blind people. Applicants should have an Honour people. Applicants should have an Honour Degree in Physics and/or communications en gineering, preferably with practical experience in this branch of electronics. Initial salary according to qualifications in the region of E450-£550 with superannuation under
F.S.S.U.-Apply to St. Dunstan's Research Dept., 8, Minde St., Mancliester Square, W.1. PUBLICITY department of large electrical 1. englneering firm requires assistant to take charge of publication of sales promotion literature; work comprises sub-editoring of material and direction of presentation and printing; essential qualifications, good educa tion and personality, B.Sc. (electrical engin eering), age 27 to 45; leadership and adminis trative ability, originality and good artistic appreciation, knowledge of type and of repro duction processes; previous experience of simi lar duties.-Write, giving full particulars of experience, and state salary required, to Box N5377 A.K. Adyg. 212a. Shaftesbury Ay, W. C 2 F.M.I. ENGINEERING DEVELOPMEN'I ing office for the following :-(a) Seni ing office for the following:- (a) Senioy Sectro-mechanical designer-draughtsnien. (b) Senior electrical designer-draughtsmen. The above are required on electronic. tele-communication, and electro-mechanical engineering; only 1st class designer draughtsmen need apply. Vacancies offer excellent prospects on high-class work of paramount national im-portance-Apply, stating age, fullest details of experience, together with salary required, to Personnel Department, E.M.I., Ltd., Blyth Rd., llayes, Midillesex. [9118 B.B.C. invites applications for the post of enthe research department, based in London. Candidates must possess a university degree, or equivalent qualifications, in physics or electrical engineering and must have taken telecommunication as part of their training. A knowledge of electrical measurements, measuring instruments and experience in microphone and loudspeaker technique is essential. The work includes research into microphones and loudspeakers and embraces all other aspects of audio frequency research and develomment. Preference will be given to a candidate with the ability to guide development work in drawing office and workshops. Musical ability is an advantage. The salary is on a grade rising by annual increments of £40 to a maximum of £890 per annura. Applications, stating age, qualifications and experience, should reach the Engineering Establishment Onicer, Broadcasting Honse, London, W. 1. Within 14 droys of the apprarance of this atvert isement.

\title{
THE \\ BRITISH NATIONAL RADIO SCHOOL
}

ESTD. 1940
A privately owned personally conducted coaching service by post

\section*{SERVICE SATISFACTION}

\section*{SINCERITY}

PLUS A GUARANTEE that really means Something

ORIGINATORS of the B.N.R.S.

\section*{FOUR YEAR PLAN}

Covers full syllabus of A.M.I.E.E., A.M. Brit. I.R.E., and C. \& G.

Radio and Telecommunications Examinations at a cost of
\[
8^{\text {d. }} \text { PER DAY }
\]

Free Booklet from :
Studies Director, B.N.R.S., 66, ADDISCOMBE Rd., GROYDON

Phone : Addiscombe 3341

\section*{PEERLESS}

\section*{TYPE 1047 RADIO CHASSIS}

Those who visited our stand at Radiolympia were quick to appreciate that this chassic, with its workmanlike design and generous specificacion, provides the enthusiast with something out of the ordinary at a reasonable price.

Among its principal features are:-
- Io stage superhet circuit.
- Io valves (including magic eye).
- RF amplifier.
- 2 IF stages.
- 4 wave bands.
- io Watts push-pull output.
- Tropicalised components.

Communications enthusiasts should write for details of our 1546 Chassis.

\section*{PEERLESS RADIO LIMITED}

374, Kensington High St., LONDON, W. 14 Phone: WEStern 1221

\section*{THE CHARLES BRITAIN} Duo Channel Amplifier Chassis. An entirely new departure in amplifter design giving completely independant control of bass and treble.
This is achieved by incorporsting two entirely separate amplifiers on one chassis. One of these amplitiers is a push pull combination which drives a 12 in. spreater for reproducthon of the laas. The other is a two stage amplffler driving an 81n. apeaker for the treble.
The diseriminating user can, by means of the two controls provided. control the umount of sigaal handled by each amplities. thereby lncreasing the bays or treble as desired. Complete with 7 vialves; \(36 . J 5,36 \mathrm{~V} 6\), 1 sU 4 and two speakers, Goodmans 12in. F.M. ind Rolis 8 in. P.M.
For operation from A.C. maidos \(200-250\) volts, 50 cps , and For further detalls of this and other ampliflera send for illustrnted brochure," "w.W.
EX.U.S. NAVY Aircraft Radio Receiver Unit.
This ont fit 's complete in a Black metal caso inze 12 ib . \(\times\) 12in. \(x 81 \mathrm{in}\), tad contains in addition to a hoat of useful components, ted Interpationai octal metal cased valves including 26466,6 68H7, etc. Super quality Ratary Generator, relays I.F. transformers etc. PRICE \(29 / 6\)
each, carriage and packing \(7 / 6\) extra.

CHARLES BRITAIN (RADIO) LTD.
Radio House, 2, Wilson St. London E.C. 2
Telephone: BIS 2965

\section*{MAR ROTARY CONVERTERS}

For Radio, Neon Signs, Television, Fluorescent Lighting, X-ray, Cinema Equipment and nnumerable other applications.

> We also manufacture:-
> Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, etc., up to 25 K.V.A.

\section*{CHAS. F. WARD LERDSCROFT WORKS, HAVERHILL, SUFFOLK}

Telephone: Haverhill 253 \& 4.

lor Secondary Frequency Standards \(\star\) Accuracy better than \(0.01 \%\). \(\star\) New angles a million per degree Centigrade temperature a million per degree Centigrade temperature on to the faces of the crystal itself, giving permanence of calibration. 太 Simple single valve circuit gives strong harmonics at 100 kes . intervals up to 20 Mcs . * Octal based mount of compact dimensions. PRICE 45/- Post Free
\[
\begin{aligned}
& \text { Full details of the Q5/100, including circuit } \\
& \text { are contained in our leaflet QI. Send stamp } \\
& \text { co-day for your copy }
\end{aligned}
\]

\section*{THE QUARTZ CRYSTAL Co., Ltr. 63-7I Kingston Road, \\ NEW MALDEN, SURREY \\ Telephone : MALden 0334}
B.B.C. Invites applications to fill. a vacancy gineering division; the work involves theoretical and practical investigations on aerials, tical experience of such of modulation, prac ical experience of such work is desirable, but not essentiali applicants must possess recognised academic qualification, including a inowan aptitude for original investigation; the salary is on a grade rising by anntial incre ments of \(£ 25\) to a maximum of \(£ 580\) per annum; good promotion prospects: the successful candidate will be based at Oxford, but will later be transilerred to a permanent base near London.-A ipplications, stating age, qualifications and experience, should reach the Engineering Establishment Officer, Broadcasting House, London, W.1, within 14 days of B.B.C. invites applications for a number of Beposts for senior and junior engineers in the designs department in London. Applicants should have a university degree in engineering or an equivalent qualification, preferably in communication subjects. The work of the department covers design of testing equipment and transmission equippent for music and for 405-line television, the design of transmission apparatus for teleprinter and telephone carrier transmission, and for the various systems of disc and magnetic recording and reproducing knowledge and experience in design specialist any of the above is grades and will be an advantage in all cases. Starting salaries dependent on qualifications Starting salaries dependent on qualifications
and experience; appointments will be in grades ranging from \(\dot{x} 580\) per annum maximtum for junior designers, to \(£ 995\) per annum maximum for senior designers. Applications, stating age, qualifications and experience, should reach the Engineering Establishment Officer, Broadcasting House, London, W. 1 , Fithin 14 days of the appearance of this advertisement. 1B.B.C. invites applications for two posts of the research department based at Oxford. Condidates should possess a university degree, or a recognised diploma, and should have taken telecommunication as part of their training. They must be capable of conscientiously carry ing out experiments involving radio frequency measurements in any part of the British Istes and should have an interest in field strength measurement work and allied problems of propace on applicable to broad work and the use of receiving equipment is desirabe the successiul candidates will be based at Oxiord in the first instance, but will be required to spend a large proportion of their time away from base, and at a later date the base will be translerred to the London Area. The salary is on a grade rising by annual increments of £30 to a maximum of \&680 per annum. Applications, stating age, qualifications and ex perience should reach the Engineering Estab-
lishment Officer, Broadcasting Holise, London lishment Officer, Broadcasting House, London, W. 1 , within 14 days of the appearance of this advertisement.
THE MULIARD ELECTRONIC
RE
R THE MULLARD ELECTRONIC REcations for the following posts: (1) A senior scientist to lead a group working on ultra high radio fraquency circuits in close association with valve laboratory and on centimeter wave projects; he should have a good honours degree in physics or e.ectrical engineering or inathe masics, at least four years experience in the UHF field and be capable of both experimental and theoretical treatment of problems in this field. It is expected that the age of the successful candidate will be between 27 and 35 years and his salary between \(£ 650\) and \(£ 1,000\) a year according to experience and ability above and other broups the group mentioned above and other groups working on super-
sonics,
electronic measurement and control, television and radio component design. They shonld have similar academic qualifications to the senior man and preferably some experience of research work. It is expected that the successful candidates will be between 20 and 30 years and their salaries between \(£ 350\) and \&700 a year according to qualifications. Applications shonk be made to the Manager, Mul hill. Gurrey. Laboratories. Salfords, Nr. Red

\section*{TX-R.A.F.CDITUTIONS WANTED}
[9017
14 energetic educated Fitter, 21 ambitious seeks interesting post with plenty of scope.Box 5045.
Box 5045 . yrs, with large manufacturer and Guilds, \({ }^{7}\) tative expergence: specialist, wide represenand industrial instrumentation, medical equip-ment.-Box 4959

\section*{HIGH FIDELITY}

We welcome all enthusiasts to our new premises. We carry stocks of Partridge and Varley Transformers and Chokes, matched output valves, matched resistors, high quality loudspeaker:, P.Us., gramophone motors, baffles, Bass Reflex cabinets, and all components for High Fidelity Receivers and Amplifiers. Complete equipments are also Amplifiers. Complete equipments are also be glad to send you a copy on receipt of your address and \(2 \frac{1}{2}\) d. stamp.
ROGERS DEVELOPMENTS CO.
12, MACCLESFIELD STREET, SHAFTESBURY AVENUE, W.I. Telephone: GERrard 8256
U.S.A. RADIO AIRORAFT RECEIVERS, TYPE CCT-48145, MADE BY STROMBEROMARLSON. These Fx-Govt. 6-Valve recelvers are brand new and packed ti original cartons. Orerall dimeneions approx. \(10 \frac{1 \mathrm{in} .}{} \times 4 \mathrm{in}\). \(x 5 \mathrm{htn}\). high conthining removable plus.in dynamotor for 2428 volts. Valves ure one 12 Ks , three 129K7, one 128k7 and 12A6, three Per-meability-tuned I.F. Transformers, Input alignting condenser athd maln tuning condenser originally intended for use with remote control but easily adapted for direct tuning on the Medium Waveband, 5120-1,600
\(\mathrm{Kc} / \mathrm{s}\)
Cricuit diagrams now avallable for the athove receiver
at 5/- each post paid. at \(5 /\) - each post paid.
Other equipment available.
R. 1147 Receiver. \(30 /-\) plua \(5 /\)-carriage, etc.
 Walhic-talkie type 68T BFCEIVER OMLY, complete with aerial and box of spare vilves, \(£ 1 / 10 /\) - plup \(2 / 6\) arriage, etc.

Mail orders and enquiries promptly satisfied.
ALEC DAVIS (Supplies) LTD.
18, Tottenham Court Road, Loncon, W.1.

> TRANSFORMERS \& COILS TO SPECIFICATION.

MANUFACTURED OR REWOUND. Filter Coils a speciality. JOHN FACTOR LTD.
9-11 EAST STREET, TORQUAY, DEVON. Phone: Torquay 2162

\title{
"WEYRAD" PERMEABILITY TUNERS
}

SUPERHET OR T.R.F.
AS EXHIBITED AT
RADIOLYMPIA

\author{
SEND FOR \\ DETAILS
}

WEYMOUTH RADIO
MFG. CO., LTD.
CRESCENT WORKS, WEYMOUTH

ERWIN SCHARF 49.51a, DE BEAUVOIR RD. LONDON, N.1.
Tel.: Clissold 7713-0941. Cables: Echovox, London
'Radiospares' Tuality Parts

\author{
The \\ Service Engincer's First Choice
}

CALLING AMATEURS with BUCCLEUCH Precision Built Equipment STREL CHABSIS BMOOTH BLACK

2\(171^{\prime \prime} \times 10^{\circ} \times 22^{4}, \quad 9 / 9\).
\(17 \times 10^{\circ} \times 2^{2}, 8 / 9\),
PANELS.CRACKLE
\(19^{\circ} \times 34^{\prime \prime}, 4 /-\)
\(19^{\circ} \times 7^{\prime}, 6 / 8 ;\)
\(19^{*} \times 10 \mathrm{j}^{-}, \mathrm{B} / 9\)
ANGLE BRAOKETS, \(12 \downarrow^{*}\) long, pr.7/6. (\(A 1\) in Bright Aluminium, same cost.) COMPLETR RAOK ASSEMBLY (Rigid 4-Pullar), 63", £3/5s. 311", £2/5s Ohassis, etc., to order, Id sq. inch.
(Include aldes when costling.) PUNOHING GHARGES UP TO I~, VALVE HOLEB, 1* \(11^{*}\) or \(14^{*}, 6 \mathrm{~d}\). METER HOLESE, etc.; 1/6. GQUARE HOLES, \(2 /\)
BUCCLEUCH RADIO MANUFAGTURERS \& 2 MELVILLE TERRACE, EDINBURGH. 9 Factory: Wheatfieli St., Edinburgh

YOUNO man, 23, gocd theoretical knowledge Y radio circuits and fault-finding seeks practical experience, remuneration of less impor tance than need for experience.-Box 4768 . CNGINEER, middle 30s, \(\mathbf{C}\) and \(G\) Finals in Cindio communication and techmicaluction tricity, seeks change; experienced produchop ment; some felevision knowledge.-Box 5103.
\(G\) RADUATE engineer of mechanical faculty, with wide experience, managing directo of big tele-radio communication factory abroad specialist in mass production, time and motion study. tools and machine fixtures designing thorough knowledge of limits and precisio fittings for ellgineering. etc., now seeks ap pointment \(n\) LClal

> FINANCIAL PARTNERSHIPS

W ANTED. active interest in sound radio, Welectric, P.A, or relay concera; £1,500 to £2,000.-Box 5022. [g78 HXPANDING company offers active partner 1. ship to experienced engineer with good working knowledge oi aerials, amplifiers and test instruments: excellent possibilities for keen, hard-working man; capital \(£ 500\) to £1,000-B0x 4961
\([9013\)
FNGINEERING careers and qualifications
BOTH Government and industry have anounced and emphasised that young men with technical knowledge and qualifications must receive every chance to rise to the highest positions within their capacity in post-war engineering and allied industry rite to-day for ". The Engineer's Guide to success"-200 course free-which shows you success - M.E.E A. M.E M Mech A Fil Aes. eta, and cover A.M.I.Mech.E., A.F.R.A.M.E. all branches in radio, automobie, mechanica lectrical production, aeronautical, etc. THE Technological Institute of Great Britain 32. Temple Bar House, London, E.C.4. [4918 DOSTAL courses of instruction for amateur radio transmitting licence P.M.G. Cert ficates in wireless telegraphy. Ministry or civil Aviation Certificate, radio engineering and television; also instruction at sehool.-Apply, British seol ham Rd. London, S.W. 9 (Eistd. 40 vears)

C NGINEERING opportunities."-Have you A.M.I.Mech.E., A.M.I.E.E this and all branches of engineering, building and plastics? Become technically trained on "no pass-no fee" terms for bigher pay and security.-For free copy write B.I.E.T. (Dept. 387B), 17, Strat.for Place, London, W.1. [6939 THE Institute of Practical Radio Enghecr 1 have avallable Home Study Courses cover elementary, theoretical, mathematical practical and laboratory tuition in radio and elevision engineering; the text is suitable cosching matter for I.P.R.E. Service entry and progressive exams.; tuitionary fees at pre-wa rates-are moderate.--The sylabus of nistruc tlonal Text may be obtained, post free, from the Secretary, 20, Fairfield Rd., Crouch End N. 8.

AGENCIE
CONTACTS desired with overseas radio im porters.-Box 5047

9104 AGENTS WANTED
MANUFACTURERS require representatives I throughout the U.K. to market their pecial moving coil pick-ups and other special

> BUSINESSES FOR SALE OR WANTED

BUSINESS with four-roomed flat, six good \(B\) agencies, sales and service, shop, £200 p.a. inc.; flat £120 inc.; profit £1,250 p.a.; price £1,500 s.a.v.-Write Box 5683. R ADIO and electrical retail repairs, lock-up K shop, centre large village near Essex coast; annual turnover approx. £1,000; price, inc. fixtures, fittings, test gear, etc., £550 plus s.a.v.; low rent, moderate lease, audited accounts.-Apply c/o E. Crabb, 65, South Primrose Hill, Chelmsford. [9042 TECHNICAL TRAINING
A M.I.E F.. City of Guilds. etc. on No - Pass-No Fee terms; over \(95 \%\) successes; or full details of modern courses in all branches of electrical technology send for our 12-page handbook, free and post iree.B.I.F.T. (I)ept. 388 A), 17. Stratiord Place. London, WOOKS, INSTRUCTIONS, ETC.
RADAR Engineering, Fink, 42/-; Principles R of Radar, M.I.T., \(30 /-\) Terman, Radio Engineers Handbook, 42/; Henney, Tadio Eligineers Handbook, \(42 / \mathrm{F}\) : Colvin, American Machinists Handbook, \(36 / \therefore\) Knowlton, Standard Handbook for Electrical Engineers, 60 /this offer includes latest advance in price over 400 titles of the McGraw Hill Publica tions are in stock at H. G. Baskett, 201 Ux bridge Rd.. West Faling. W. 13 . 19050

\section*{How to make "Hi-Fi}

Apart from the shortage of materials we have to export an appreciable proportion of what we make. This means that many of the eitizens of this small country of ours have to " make do and mend" if they want Hartley-Turner reproduction, which is natural and realistic even if it sounds somewhat different from other " hi-fi."
A general grasp of the whole problem can be got by reading "New Notes in Radio " (5th edition, 3/8, post free) which is now recognised as of the same high standard as everything eise we produce.
Our promised leaflet service is nearly ready and it will be supplemented by a series of Technical Bulletins (details of which will be sent on request) giving every detail of the construction of our equipment. These and the necessary component parts will be ready during February.
Alas-you will still have to buy the Hartley-Turner Speaker (price E9) for \(^{\text {(9) }}\) neither you nor anyone else can make it and there just isn't any substitute. But at least it is available in somewhat limited quantities.
H. A. HARTLEY CO. LTD.

IS2, HAMMERSMITH RD., LONDON, W. 6 RIVerside 7387

\section*{L-R.S IN STOCK} AYOMETERS
Model 7
Avominar AC/DO Universal meter 08100 Valve tester, complete

Cash price \(\mathbf{\Sigma 1 9} 10 \quad 0\)
28100

Avominor DC meter
4
Oscillator, mains
\&4 40

All Avometers available on convenient terms
Morphy Richards Auto Elestric Irons. Cbrome superb quality 39,6 post \(1 /\) -
Illustrated list of any of the above items \(1 d\)
The LONDON RADIO SUPPLY CO.
(The L.R. Supply Go. Lid.) Est. 192 BALCOMBE

SUSSEX

\section*{IRON DUST CORED COILS}
of Exceptional Efficiency and Stability AERIAL AND OSCILLATOR, hort, medium, or long wave, size lin. \(\times\) in. \(/ / 6\) pair.
AERIAL AND OSCILLATOR, medium or long wave. size sin. x fin. 6/9 pair.
DUAL WAVE COILS, medium and long wave aeria nd h.f. \(\oplus / 6\) pair.
IF. TRANSFORMERS, Standard Frequency 465 Kc/s. Size, 112. diam. \(\times 1 \neq 1 \mathrm{~m} . \mathrm{high} .8 / 6\) each. ach. YOMETER Model 7 \&19/10/
All coils fitted with adjustable iron corgs, and suppiled with circuit diagram.
TERM8 : Cash with order or C.O.D. on ordeis over \(\& 1\).
MONOCHORD RADIO
(Established 1929)
17 Streatham Hill, London S.W. 2 Phone: Tulse H141051/2

A.IB. OAK
The wave change switch with silverplated double contacts.
A.B. METAL PRODUCTS LTD., Great South. West Road, Feltham, Middx Wifict switelnes

\section*{PHOTO-ELECTRIC CELLS}

Talking Picture Apparatus. Catalogue now available
RADIO-ELECTRONICS LTD., St. George's Works, South Norwood, London, S.E. 25 ,

\section*{MORSE CODE \\ TRAINING}

There are Candler Morse Code Courses for

\section*{BEGINNERS AND} OPERATORS
Send for this Free "BOOK OF FACTS" It gives full details concerning all Courses.

THE CANDLER SYSTEM CO., (Room 55W), 121 Kingsway, London, W.C. 2 Condler Sustem Co., Denver. Colorado, U.S.A.

\section*{Thmon SOUND SERYMCE} THE COMPLETE SERVICE FOR SOUND RECORDING AND REPRODUCTION
* Mobile and Static Continuous Recording Outfits.
* Recording Amplifiers
* Moving Coil and Crystal Microphones
* \({ }^{*}\) Sapphire Pointed Reproducing Styli and Cutters.
* Blank Recording Discs from 5 in . to 17 in . Single or Double sided.
* Light-weight moving iron, permanent sapphire and moving coil pick-ups.
\(\star\) Label and Envelope Service.
* A comprehensive range of accessories to meet every requirement of the sound recording engineer.
* And our latest development (of special interest to users of sapphire or delicate pick-ups)-The Simtrol.
This is a controlled micro-movement easily fitted for use with any type of pick-up to eliminate the danger of damage to the record or pick-up. This is achieved by a vernier lowering action of the pick-up head to the record.
Write for comprehensive lists or call at Recorder House for demonstration -
RECORDER HOUSE, 48/50 GEORGE ST. PORTMAN SQUARE, LONDON, W.I.
Telephone: WEL 237//2 Telegrams: Simsale, Wesdo. London

Manufacturers of LOUDSPEAKERS LAMINATIONS SCREENS In RADIOMETAL PERMALLOY SILICON ALLOYS ELECTRICAL SOUND \& TELEVISION PATENTS LTD. 12, Pembroke Street, London, N.1. Terminus 4355 2/4, Manor Way, Boreham Wood, Herts

Elstree 2138

\section*{METERS !}

Our comprehensive range of brand new meters includes the following types at the owest prices vet offered. Add postage and packing as requirements
\(0-8\) v. D.C. M.C. \(2 \frac{1}{2} \mathrm{in}\). Round, \(7 /-\quad 0-40\) v, D.C. M.C. 2 in, square, \(7 /\) \(0-300\) v. D.C. M.C. 2 in. square, \(7 /-\), \(\quad 0-5 \mathrm{~m} / \mathrm{a}\) D.C. M.C. 2 in. square, \(10 /-\) \(0-30 \mathrm{~m} / \mathrm{a}\) D.C. M.C. 21 in . round, \(6 / 9 \quad 0-50 \mathrm{~m} / \mathrm{a}\) D.C. M.C. 21 in . rouni, \(/=\) \(0-10 / 120 \mathrm{mja}\) D.C. M.C. \(\operatorname{Din}\). square, \(7 /-\quad 0-500 \mathrm{~m} / \mathrm{a}\) D.C. M.C. 2 lin. round, r/3 \(0-1.6 \mathrm{amp}\). D.C. M.C. \(2 \frac{1}{2} \mathrm{n}\), round, 7/6. \(0-10 \mathrm{amp}\). D.C. M.C. \(2 / \mathrm{n}\), round, \%/6 \(50-0-50 \mathrm{amp}\). D.O. M.C. 2 in , square, '/7/6. \(0-500 \mathrm{~m} / \mathrm{a}\) R. W. Thermo 2 in . square, 7/3. \(0-2.5 \mathrm{amp}\). R.F. Thermo 2fn. square, \(7 /-0-4 \mathrm{amp}\). Aerial Ammeter with push \(0-100 \mathrm{~m} / \mathrm{m}\) D.C. M.C. 2tinc. square, with button shorting ewitch, \(10 /=\)
push button shorting switch, 12/6. \(0-14\) amp. D.C. M.I. Ein. ironclad round \(0-10\) amp. H.F. Hot Wire 5in., \(30 /\) 3r/8.
\(0-1500\) v., 0-2000 v., 0-3000 v. Electrostatic all 2\%/6 each
Foundation Meter \(1.5 \mathrm{~m} / \mathrm{a}\) D.C. F.s.L. Calibrated volts ohms., 15/-
Or our selection of 6 sssortea meters for \(35 /-\)

Mail Order Supply Co., Dept. WW, 24, New Road, London, E.I. 'Phone: Stspney Green 2760-3906

\section*{N}

\section*{ene}

By extending the range of Lustraphone Moving Coil Microphones, users anxious to obtain the best instrument for the
job will find in these models everything they want in terms of good reproduction and lasting dependability.

\section*{MOVING-COIL} MICROPHONES Leaflet from

\section*{LUSTRAPHONE LIMITED}

84, Balsize Lane, London, N.W. 3 Telephone: Hampstead 5389 and 5515```

[^0]: *The description "atomic energy," now widely accepted, is somewhat misleading since the term describes energy derived from the nucleus of the atom. A better description might have been "nuclear energy." Atomic energy is released whenever we burn petrol or coal.

[^1]: The General Electric Co. Ltd., Magnet House, Kingsway, Londan, W.C.2.

